

Beyond Aggregates: Within-District Educational Inequity in Fort Bend Independent School District

Cyrus A. Damani
cyrusdamani@outlook.com

ABSTRACT

Educational inequity is a significant issue in the American education system, with Black, Hispanic, and economically disadvantaged students facing disproportionate barriers to post-secondary success. This exploratory quantitative research investigates how the Fort Bend Independent School District's overall "B" accountability rating masks significant within-district educational inequities despite Texas's comprehensive policy frameworks including College and Career Readiness Standards and the 60×30TX plan. Using Texas Academic Performance Report data from 2020-2023, this study analyzed college readiness indicators, graduation rates, and demographic patterns across 11 high schools serving nearly 80,000 students in one of Texas's most diverse districts. The results of this study indicate striking demographic sorting where A-rated schools such as Clements serve predominantly Asian students (55.5%) while F-rated schools such as Willow Ridge serve mainly African American (63.7%) and Hispanic (31.4%) students. Substantial achievement gaps were found in this study including Asian students outpacing peers by 45-47 points in TSI Math and 38 points in TSI ELA, while economically disadvantaged students trailed by 13 points across multiple readiness indicators. The most concerning finding was that high graduation rates provide false reassurance about student preparation, as African American students show a 48-point gap between graduation (93%) and college readiness (45%) while Hispanic students demonstrate a 43-point gap (87% vs. 45%). These findings demonstrate how the aggregate accountability measures can obscure systemic inequities within seemingly successful districts, highlighting the need for disaggregated reporting and comprehensive solutions to resolve educational segregation patterns.

INTRODUCTION

Educational equity represents one of the most pressing concerns in the U.S. education system (Naim, 2025; Phillips & Kozol, 2023), with persistent disparities in graduation rates and college readiness affecting millions of students nationwide (Cabral et. al., 2023; Maisuria and Lally, 2024; Reed et al., 2023). These disparities disproportionately affect Black and Hispanic students and economically disadvantaged students (Ghimire, 2024; Naim, 2025; Phillips & Kozol, 2023; Souto & Shroff, 2023; Strello et al., 2023). The outcomes of such disparities have been shown to persist in post-secondary educational attainment (Ghosh, 2024) as well as employment and income-related outcomes (Maisuria and Lally, 2024). In contrast to the above-mentioned trends, studies show that Asian American students

December 2025

Vol 2. No 1.

demonstrate superior academic achievements compared to all other ethnic backgrounds by achieving higher grades, higher standardized tests, and higher attainment of post-secondary education (Hsin and Xie, 2014; Kao, 1995; Sakamoto et al., 2009).

Over the past decade, the U.S. Aggregate Cohort Graduation Rate (ACGR) has increased from 80% to 87% overall; however, Hispanic and Black students continue to graduate at lower rates than Asian and White students (NCES, 2024). While high school graduation marks an important milestone, it does not necessarily correspond to college readiness, as recent data show that only about 33% of U.S. high school students are college-ready for math and 35% ready for reading (The National Assessment of Educational Progress (NAEP), 2025). Importantly, these concerns have been documented for several decades. In the report, *A Nation at Risk* (National Commission on Excellence in Education [NCEE], 1983), the commission warned that the American education system was failing too many students and creating growing gaps in achievement across communities. The report explained how uneven school quality, outdated teaching practices, and unequal access to challenging coursework were leaving students unprepared for college (NCEE, 1983). The report cautioned that, without major changes to the structure of education in America, opportunity gaps would continue to harm students from under-resources schools at disproportionate rates (NCEE, 1983). Specific to the current study that focuses on a Texas School District, in 2022, it was noted that only 69% of Texas high schools were college or career-ready (Texas Education Agency, 2023).

To address these achievement gaps, both the Texas Higher Education Coordinating Board (THECB), a group that oversees the public and independent post-secondary education system, and the Texas Education Agency (TEA), a group that oversees public primary and secondary education, collaborated to improve student outcomes (TEA, 2004; THECB, 2004). Consequently, in 2006, College and Career Readiness Standards (CCRS) were developed in English/language arts, mathematics, science, and social studies to ensure that students successfully completed entry-level courses at post-secondary institutions (Conley et al., 2010; TEA, 2004; THECB, 2004). Building on this improvement effort, the THECB launched a 60×30TX plan in 2015, establishing the goal of having 60% of Texans aged 25-34 obtain a certificate or college degree by 2030 (THECB, 2015). Between 2017 and 2018, the TEA further strengthened accountability measures by implementing College, Career, and Military Readiness (CCMR) indicators and an accountability rating system for Texas school districts and individual schools through House Bill 22 (HB 22, 2017; TEA, 2017). The school accountability rating system provides a standardized method for evaluating and sharing school performance data with parents, educators, policymakers, and community members (TEA, 2017).

Although the policy frameworks established by the THECB and TEA provide a strong foundation for career and college readiness across Texas, individual districts and schools experience varying levels of success in improving these outcomes for their students. These varying levels of success reflect the broader educational equity challenges that exist throughout Texas districts. Specifically, according to TEA open-access reporting, the Fort Bend ISD faces educational equity challenges within the district (TEA, 2024). Despite earning an overall “B” accountability rating from the TEA, individual campus

ratings vary dramatically. Additionally, students of different racial/ethnic backgrounds within high-performing schools experience differential college readiness outcomes despite shared access to similar school resources.

For this reason, district-level success metrics (College, Career, and Military Readiness indicators, graduation rates, and college readiness levels) may mask campus-level and within-school opportunity gaps in Fort Bend ISD and may subsequently fail to consider any factors that may generate differential college readiness outcomes among students who do not have equal access to educational resources. This study sought to explore how accountability systems and opportunity structures create multilayered equity challenges within the same school district. Furthermore, the current study seeks to better understand whether the aforementioned statewide policies developed to improve college readiness among Texas High School Students translate into outcomes within a specific Texas school district, the Fort Bend Independent School District (FBISD).

The Fort Bend Independent School District (FBISD) is an ideal school district for this exploratory analysis for several reasons. First, Fort Bend County is the ninth largest in Texas and one of the fastest growing in the nation, with a population growth of 53% over the past decade due to families moving here for affordable housing and an exceptional quality of education (Fortbendcounty.com, 2025). Second, in terms of the student population for a more representative sample, FBISD is the largest school district in Fort Bend County and the sixth largest in Texas, serving nearly 80,000 students (Fortbendcounty.com, 2025; FBISD.com, 2025). Third, FBISD is the most diverse district in the nation, with families speaking more than 100 different languages (FBISD.com 2025). Fourth, while other diverse districts have major/minor demographic compositions (e.g., Katy Independent School District (ISD): 63% Hispanic/Black, Pearland ISD: 53% Hispanic/Black), FBISD maintains a nearly equal representation across four major demographic groups (28% African American, 27% Hispanic, 28% Asian, and 13% White). Finally, other ISDs show less variation in A to F ratings among schools within their districts, with many districts featuring mostly high-performing schools, while others have mainly low-performing schools. Schools within the FBISD cover the full range of school performance ratings, from A to F. This level of representation across all ratings makes the FBISD an optimal district for investigating district equity patterns.

Research Question

- 1: How might FBISD's "B" district rating mask the reality of campus ratings ranging from A to F?
 - 1b: What are the policy implications of this accountability gap?

LITERATURE REVIEW

Accountability within the United States Education System

Unlike many countries with centralized systems, education in the United States is primarily the responsibility of state and school districts (Thattai, 2001; Department of Education 2025). The U.S. spends approximately \$857 billion a year on K-12 public schools, which is about \$17,277 per student. The total government funding is nearly \$878 billion; however, the federal government contributes about 14%, while states provide 44% and local governments 42% of the funds (Department of Education, 2025; Hanson, 2025; U.S. NCES, 2025). Although the U.S. ranks third among developed nations in terms of per-student spending, it still falls short of international benchmarks. Only 12.7% of total government spending goes to education, which is below UNESCO's recommended 15%, and education funding accounts for 5.59% of GDP, slightly above the North American and European average of 4.61% (Hanson 2025).

In addition to supporting student outcomes through funding, the federal government implemented oversight responsibilities, starting with the No Child Left Behind Act (NCLB), enacted in 2002 (NCLB, 2002). This law required states to administer standardized reading and math tests to students in grades 3-8 and once during high school. This law also required states to demonstrate adequate yearly progress while setting a challenging target for complete student proficiency at 100% by 2013-2014 (US Department of Education, 2004).

Nearly a decade later, the Obama administration introduced new initiatives through the American Recovery and Reinvestment Act (Recovery Act) in 2009 and the Race to the Top (RTT) initiative in 2011. Together, these programs offered \$4.35 billion federal funding to eligible states, shifting their focus from merely measuring student performance to evaluating teachers based on test scores (Dragoset et al., 2016). The current version of this policy, called Every Student Succeeds Act (ESSA), was signed into law in 2015, replacing the NCLB (ESSA, 2016; TEA, 2017). ESSA requires states to hold schools accountable for student achievement and growth, school quality indicators, English language proficiency, and graduation rates. Under the ESSA, states are required to report whether their schools meet academic targets (US Department of Education, 2017). While all states comply with the ESSA requirement of providing school academic reports, 13 states actively use the A-F letter grade rankings. Texas adopted the A-F grading system in 2017 through House Bill (HB) 22, with the first ratings published by the Texas Education Agency (TEA) in 2018 (Pivovarova et al., 2024; HB 22, 2017).

Accountability within the Texas Education System

The Texas Accountability Data Report, administered by the TEA, refers to an evaluation of the academic performance of Texas public districts and schools. In this report, the district and schools receive an overall rating as well as an A-F rating for each of the domains listed below (Table 2). The A rating reflects “performance, consistent with reaching long-term student goals,” meaning exemplary performance. B

refers to “recognized performance,” C refers to “acceptable performance,” D refers to “in need of improvement,” and F refers to “unacceptable performance.” (TEA, 2024). The A-F rating is based on defined criteria, which include the evaluation of the following three domains, as presented in Table 1.

Table 1

Evaluation categories of the academic performance of Texas public districts and schools

Student achievement	This domain measures student achievement in all courses, College, Career, and military Readiness (CCMR) indicators, and graduation rates.
School Progress	This domain looks at two aspects: <ol style="list-style-type: none"> 1. Academic growth, which measures the percentage of students who advanced at least one year academically, as indicated by STAAR results or earned through accelerated learning. 2. Relative performance compared to similarly economically disadvantaged students. Only for Alternative Education Accountability (AEA) campuses, the evaluation is based on the percentage of students who earned grade level or above on retest.
Closing the gaps	This domain breaks down the data by student groups to show how different populations, such as racial/ethnic minorities and economically disadvantaged students, are progressing toward goals at varying rates. This domain ensures state accountability system compliance with ESEA and ESSA.

Source: TEA, 2024

Seventy percent of the rating is based on student achievement or school progress, while thirty percent is based on closing the gaps. Schools can choose whether they would like to be rated on student achievement or school progress. Furthermore, if schools choose to be rated on school progress, they can further choose to be rated on academic growth or relative performance under that category (TEA, 2024).

Table 2

TEA Accountability Report Table

Grade	Percentage	Performance
A	90-100	Exemplary Performance
B	80-89	Recognized Performance
C	70-79	Acceptable Performance
D	60-69	In need of improvement
F	< 60	Unacceptable Performance

CCMR Indicators and their Association with College Readiness

College, Career, and Military Readiness (CCMR), a part of the student achievement indicator (Table 1), is designed to assess high school graduates' readiness for college, the workforce, or the military. The CCMR includes several indicators, as listed in Table 3. These indicators are set to evaluate whether students are prepared for college, careers, or military post-graduation (TEA, 2024).

Table 3

College Readiness Indicators

Meet criteria on *AP/**IB exams- Minimum score of 3 in AP or 4 on IB examination
Meet ***TSI criteria (SAT/ACT/TSIA) in reading and mathematics
Complete a college prep course offered by a partnership between a district and
Complete a course for dual credit
Complete an On Ramps course in any subject and be eligible to earn college credit
Earn an associate's degree
Meet standards on a composite of indicators indicating college readiness

Source: TEA, 2024; *AP: Advanced Placement ** IB: International Baccalaureate *** TSI Texas Success Initiative

Several studies have shown that one or more college readiness indicators correlate with successful post-secondary outcomes. For example, The Central Texas Student Future Project, which analyzed the factors influencing post-secondary education and labor markets, showed that students who take math courses beyond algebra II or more than one AP/IB course are more likely to enroll in 4-year colleges (Cumpton et al., 2012). Further studies have shown that the intensity of a high school curriculum supersedes anything else in determining successful degree completion (Adelman 2006; Smith et al. 2017). Holzman et. al (2024) showed that taking a higher number of college preparatory courses, including Advanced Placement (AP) and IB coursework, is associated with higher bachelor's degree attainment. Furthermore, Gallardo (2024) discussed the impact of dual enrollment programs on effective college preparation.

In 2023, the TEA requested that American Institutes of Research (AIR) investigate the relationship between CCMR indicators and post-graduation outcomes for Texas schools (Mellor et al. 2025). The report was published in 2025 and showed that AP/IB, TSI, On Ramps, and Dual credit courses were the most effective indicators for earning a C or better in college for the 2022 Texas cohort. The largest achievement impact was found in Math (+14.9 points), followed by a moderate positive impact in reading (+13), and the smallest in writing (+7.3). On Ramps showed +12.3 in math vs. +9.6 in reading and +9.5 in

writing, suggesting that the CCMR indicators are most predictive of success in college math courses and somewhat less predictive for reading and writing. They also compared schools in multiple cities and showed that Houston as a region showed a 14.8+ predicted probability for C or better in entry-level college credit courses for math (4th best), +13.4 for TSI (3rd best), and +12.7 for On Ramps (5th best) among 20 Texas cities, suggesting higher performance in Houston schools.

METHODOLOGY

Research Design

This exploratory, quantitative study aimed to gain a deeper understanding of how the average reporting of district student outcome variables, such as college readiness, may mask the individual outcomes for specific schools and students. To accomplish this task, this study examined each college readiness indicator for the 2022-2023 school year, specifically for the state, region (Houston), and Fort Bend District. This study did not examine career or military readiness indicators or other accountability report domains. Furthermore, the study examined 11 High Schools within the FBISD to see variations in attendance, chronic absenteeism, and post-secondary outcomes across different demographic groups. Following this investigation, the study then sought to explore the graduation versus readiness gap for all 11 high schools within the district, as it has been established that these indicators are positively associated with college readiness (Mellor et al. 2025). Specifically, this study examined trends in graduation rates versus readiness gaps over a four-year period (2020-2023) in 11 high schools. Although there are 12 high schools in the FBISD, the study did not include Almeta Crawford High School because it opened in 2023 with only the 9th and 10th grades.

Based on an extensive review of the literature, this study serves as one of the first systematic examinations of within-district equity gaps in the FBISD. Therefore, descriptive and frequency analyses were conducted as a means of exploratory inquiry to fill the gap in previous research and lay the necessary groundwork for future research. The primary objective of this study was to identify patterns and disparities that aggregate district ratings may conceal, which descriptive statistics effectively expose. Second, the study relied on existing accountability data for its analysis as it restricted the exploration to available metrics, making descriptive analysis the most suitable method. The descriptive findings of this study provide direct policy guidance to districts and states as they do not require sophisticated statistical models.

Data Collection and Data Source

Raw data were unavailable for this study. Instead, open-access secondary data in the form of percentages were extracted from the full Texas Academic Performance Report (TAPR) produced by the TEA. Reports contain individual percentages for many variables and are publicly available for states, districts, and individual schools, covering the academic years 2012-2013 to 2023-2024. The TAPR provides

information on multiple variables, such as STAAR scores, attendance, absenteeism, graduation rates, CCMR indicators, and demographics, each year to provide a context for the school ranking system. The TAPR was located using a Google search process from the TEA under reports and data. Certain safeguarded raw data, including individual standardized test scores, grade point averages, and other sensitive data points are protected by FERPA regulations. Given that this type of raw data was unavailable for this study, the data collection process for the descriptive analysis focused on extracting the percentages that were reported by TARP.

Data Analysis

Following the recommendations of Cheng and Phillips (2014), secondary data were analyzed and re-grouped based on common comparison points (e.g., year) using the approach found in other similar inquiries. For categorical outcomes (e.g., meeting TSI, AP/IB participation, college readiness, and graduation), frequency distributions and two-way tables by year and student subgroup (e.g., race/ethnicity and socioeconomic status) were developed to display the counts and percentages. Variable comparisons were calculated across several factors within the data including achievement gaps by race/ethnicity, socioeconomic impact, gaps in high school completion versus college preparation, advanced academic opportunity disparities, and bilingual or ESL challenges.

Table 4
Fort Bend ISD 2022-2023 School Metrics

Metric (2022-2023)	Texas	Region (Houston)	Fort Bend District	African American	Hispanic	White	Asian	Economically disadvantaged	BL/EL
Attendance Rate	93.30%	93.30%	94.70%	94.40%	93.20%	94.90%	96.20%	93.50%	94.40%
Chronic Absenteeism	20.30%	20.00%	13.70%	16.00%	20.10%	11.00%	6.50%	19.00%	14.50%
Class of 2023- 4 Yr Longitudinal Rate (Gr 9-12)	90.30%	89.60%	92.90%	93.10%	87.30%	94.60%	97.60%	90.10%	80.20%
College Ready	61.90%	61.10%	60.70%	45.10%	44.60%	71.60%	86.30%	47.90%	29.80%
Graduation: Readiness Gap	28.40%	28.50%	32.20%	48.00%	42.70%	23.00%	11.30%	42.20%	50.40%
TSI Criteria Graduates in ELR	62.80%	63.70%	65.20%	50.20%	49.30%	79.00%	88.00%	51.20%	24.10%
TSI Criteria in Graduates in Math	54.30%	53.70%	56.20%	39.70%	37.70%	67.90%	84.90%	43.00%	27.00%
TSI Criteria Graduates in Both	48.40%	48.40%	51.90%	33.00%	33.60%	64.50%	82.10%	36.90%	16.40%
AP/IB Met Criteria	20.40%	23.30%	27.30%	8.60%	12.90%	34.80%	56.30%	14.10%	5.80%
Associate's degrees	2.50%	2.70%	1.40%	2.50%	1.80%	0.10%	0.40%	0.80%	5.80%
Dual Course	23.60%	21.50%	19.60%	14.90%	12.60%	18.60%	31.50%	16.30%	4.80%
On Ramps	4.80%	3.40%	0.20%	0.20%	0%	0%	0.40%	0.20%	0%
Graduates under advanced Diploma	5.60%	5.10%	5.20%	7.30%	5.60%	5.60%	2.20%	6.10%	8.90%

Source: TEA, 2024

RESULTS

An examination of the 2023-2024 TEA data in Table 4 for the FBISD revealed several key trends. These include achievement gaps by race/ethnicity, socioeconomic impact, gaps in high school completion versus college preparation, advanced academic opportunity disparities, and bilingual or ESL challenges.

Across all extracted data for FBISD, large subgroup gaps exist across several key academic benchmarks. The following section briefly expands on some of the important findings based on the distribution calculations. The complete data are presented in Table 4. Importantly, Asian students outpace other subgroups across all academic benchmarks. Based on the data, the largest gaps are in TSI Math (45-47-point gaps vs. African American and Hispanic peers) and TSI ELA (38-point gaps). Furthermore, economically disadvantaged students trail district averages by 13 points on college readiness, AP/IB met criteria, and TSI Math (Table 6). The data also indicate that high school graduation outpaces college preparation (Tables 4 and 6). Specifically, African American graduation is 93% vs. 45% college readiness (48-point gap), and Hispanic students sit at 87% vs. 45% (43-point gap). Gaps were smaller for White (23 points) and Asian (11 points) women. Advanced coursework disparities are also noteworthy (Table 4): 1) Asian students' dual-credit participation is 32% versus 15% for African American students and 13% for Hispanic students, 2) AP/IB met criteria is 56% for Asian students, versus 9% for African American students and 13% for Hispanic students.

It also appears that attendance rates align with college readiness (Tables 4 and 6) based on the findings presented in Tables 4 and 6, including the finding that higher attendance rates and lower chronic absence rates correlate with higher rates of college readiness. Furthermore, the data revealed that English Learners face large readiness gaps (Table 6). College readiness for this subgroup falls to around 30% versus the overall district average of roughly 61%, amounting to a 31-point gap. Attendance for A-B schools ranges from 94.6% to 95.5%, while attendance for C-F schools ranges from 90.0% to 94.0%. The full values are presented in Tables 4, 5, and 6, respectively.

Table 4 shows the striking patterns when focusing on school performance ratings. Specifically, higher-rated schools in the district (A-B) have higher Asian (20.7% to 55.5%) and White (9.0% to 30.3%) populations. In contrast, the lowest-rated schools (C-F) are predominantly African American (15.6 to 63.7%) and Hispanic (31.4 to 56%) student populations.

Additionally, schools with higher proportions of economically disadvantaged students have lower ratings. Specifically, within Clements, the highest performing school, 18.3% of the students are economically disadvantaged. For schools with B ratings, the proportion of economically disadvantaged students ranged from 21.8% (Ridge Point) to 43.5% (Dulles); C rated schools ranged from 61.5% (Kempner) to 72.0% (Marshall); and D-F rated schools ranged from 59.3% (High Tower) to 79.3% (Willow Ridge).

Table 5

Fort Bend ISD High School Student Demographics- 2024-2025

School	Rating	Score	African American (%)	Hispanic (%)	White (%)	Asian (%)	Econ Disadv (%)	Special Ed (%)	BL/ESL (%)	Attendance Rate (%)	Chronic Absenteeism (%)	Post Secondary Outcomes (%)	AP Courses	Student: Teacher Ratio
District*	B	80	27.9	26.6	12.7	28	47.5	15.4	20.3	94.8	13	50.8	-	16
Clements	A	90	7.2	12.4	19.7	55.5	18.3	8.6	8.4	95.5	8.7	75.3	36	19
Travis	B	88	29.1	19.5	18.4	29	37.8	12	7.7	95	11.5	51.9	32	18.8
Austin	B	87	15.8	15	15.8	49.6	36.7	9.6	12.3	94.6	14.6	62.4	31	19
Ridge Point	B	85	24.8	18.8	30.3	20.7	21.8	10.2	4.5	95.2	10.5	55.1	29	20.5
Dulles	B	83	20.4	23	13.2	39	43.5	11.2	12.4	94.7	14.2	62.9	31	17.6
Elkins	B	83	26.2	15.4	9.3	45.1	29.3	10.7	6.3	95.4	10.4	49.8	32	18.8
Kempner	C	76	15.6	40.2	11.4	29.2	61.4	12.5	21.5	94	17.7	51	24	17.1
T. Marshall	C	72	63.7	31.4	1.1	1.5	72	17.5	13.5	92.4	25.6	14.7	10	15.5
H. Tower	D	69	55.8	33.6	1.3	5.6	59.3	12.4	17.9	91.2	28.3	40.9	24	16
George Bush	D	68	36.8	41.3	4.7	13.9	67.4	12.9	22.2	92.2	24.7	36.6	27	17.4
Willow Ridge	F	59	40.1	56	1.5	0.5	79.3	16.8	28.3	90	37.6	17.9	7	13.3

Source: TEA, 2024

December 2025

Vol 2. No 1.

Beyond Aggregates: Within-District Educational Inequity in Fort Bend Independent School District

Table 6: Fort Bend ISD Graduate Readiness Gap by Year

Graduation: Readiness Gap (2022-2023)									
Individual school (Rating)	State	District	Campus	African American	Hispanic	White	Asian	Econ Disadv	BL/ESL
Clements HS (A)	28.4% 32.2%	36.8% 41.2%	15.2%	31.6%	29.0%	20.1%	8.6%	26.1%	54.4%
Travis HS (B)			28.3%	42.5%	35.0%	20.9%	14.8%	35.5%	53.1%
Austin HS (B)			24.1%	44.8%	41.3%	27.4%	10.4%	29.2%	42.2%
Ridge Point HS (B)			31.3%	48.0%	42.4%	23.0%	6.5%	50.6%	49.1%
Dulles HS (B)			21.3%	40.2%	36.9%	12.7%	8.7%	28.6%	46.2%
Elkins HS (B)			28.6%	53.2%	39.8%	30.1%	5.7%	44.9%	23.3%
Kempner HS (C)			32.0%	41.4%	45.7%	18.0%	13.6%	37.9%	47.3%
Thurgood Marshall (C)			43.4%	44.9%	43.0%	*	*	44.0%	48.1%
High Tower HS (D)			52.0%	55.0%	57.8%	56.7%	19.2%	59.0%	60.9%
George Bush HS (D)			49.2%	54.8%	51.3%	40.2%	33.1%	51.3%	60.9%
Willow Ridge HS (F)			38.8%	43.4%	36.0%	*	*	38.1%	44.2%
Graduation: Readiness Gap (2021-2022)									
Individual school (Rating)	State	District	Campus	African American	Hispanic	White	Asian	Econ Disadv	BL/ESL
Clements HS (A)	36.8% 41.2%	37.3% 39.4%	16.2%	41.5%	34.3%	22.4%	5.7%	37.4%	50.0%
Travis HS (B)			36.6%	45.3%	42.0%	40.2%	19.9%	45.2%	71.1%
Austin HS (B)			30.1%	52.3%	54.8%	33.2%	13.9%	37.8%	51.2%
Ridge Point HS (B)			38.6%	58.1%	57.1%	23.2%	10.0%	64.8%	76.6%
Dulles HS (B)			35.0%	52.9%	50.3%	32.6%	18.6%	43.9%	61.9%
Elkins HS (B)			30.4%	54.6%	50.0%	26.1%	7.5%	51.2%	70.4%
Kempner HS (C)			49.5%	63.7%	67.8%	46.7%	16.5%	46.7%	72.1%
Thurgood Marshall (C)			76.2%	81.2%	66.8%	*	*	88.8%	65.4%
High Tower HS (D)			64.2%	67.8%	68.1%	48.2%	24.4%	67.8%	58.7%
George Bush HS (D)			51.2%	51.0%	63.9%	28.8%	21.7%	51.7%	61.1%
Willow Ridge HS (F)			56.9%	63.6%	52.8%	*	*	58.4%	56.7%
Graduation: Readiness Gap (2020-2021)									
Individual school (Rating)	State	District	Campus	African American	Hispanic	White	Asian	Econ Disadv	BL/ESL
Clements HS (A)	37.3% 39.4%	36.9% 36.1%	17.4%	52.1%	28.5%	20.6%	8.7%	28.8%	51.9%
Travis HS (B)			34.8%	55.7%	35.4%	29.7%	16.3%	38.6%	66.7%
Austin HS (B)			29.9%	40.2%	47.8%	22.8%	20.5%	37.8%	83.6%
Ridge Point HS (B)			36.3%	53.7%	60.4%	17.3%	15.2%	59.7%	63.2%
Dulles HS (B)			27.3%	47.2%	40.8%	21.5%	14.7%	38.2%	61.8%
Elkins HS (B)			32.9%	59.2%	54.5%	24.3%	8.6%	51.6%	53.3%
Kempner HS (C)			34.4%	53.0%	51.2%	22.8%	13.0%	42.4%	67.2%
Thurgood Marshall (C)			80.1%	86.1%	68.5%	*	42.9%	82.6%	58.8%
High Tower HS (D)			62.7%	66.9%	64.9%	3.3%	40.0%	66.0%	86.2%
George Bush HS (D)			51.4%	53.0%	58.7%	31.6%	28.4%	55.4%	72.8%
Graduation: Readiness Gap (2019-2020)									
Individual school (Rating)	State	District	Campus	African American	Hispanic	White	Asian	Econ Disadv	BL/ESL
Clements HS (A)	36.9% 36.1%	36.9% 36.1%	11.8%	31.4%	22.0%	13.5%	7.2%	22.1%	36.8%
Travis HS (B)			29.7%	41.6%	37.5%	28.3%	14.2%	35.2%	57.3%
Austin HS (B)			23.4%	43.5%	48.4%	15.5%	11.4%	32.4%	58.9%
Ridge Point HS (B)			32.7%	54.0%	44.3%	14.7%	23.2%	60.3%	72.1%
Dulles HS (B)			29.9%	50.2%	42.5%	25.1%	12.7%	42.6%	61.4%
Elkins HS (B)			31.9%	56.7%	46.5%	21.9%	3.7%	57.4%	53.4%
Kempner HS (C)			33.7%	44.5%	43.9%	41.5%	14.3%	37.4%	65.7%
Thurgood Marshall (C)			80.3%	84.2%	71.6%	*	*	80.0%	78.6%
High Tower HS (D)			58.5%	63.7%	60.0%	43.3%	13.6%	62.3%	61.1%
George Bush HS (D)			44.0%	46.8%	50.8%	24.8%	25.8%	47.4%	45.5%
Willow Ridge HS (F)			59.6%	77.9%	62.2%	*	*	70.6%	54.4%

* Results are masked due to small numbers. Source: TEA.Texas.GOV

From 2019-2023, college readiness gaps varied by campus ratings and subgroups (Table 6). By 2023, the findings revealed that 1) A-B schools cluster around 15-31 points, 2) C schools around 32-43 points, and 3) D-F schools remain the widest at 39-52 points. This shows that college readiness gaps are larger for lower performing schools.

Subgroup patterns are consistent across campuses (Table 6): 1) African American and Hispanic students show the largest gaps (often 40-60 points in higher-rated schools and higher in lower-rated schools); 2) Asian students show the smallest gaps (5-25 points); and 3) White students sit between these groups with wider gaps in underperforming schools. Economically disadvantaged and English Learner/Bilingual students exhibit the most persistent gaps at roughly 25 points even in top schools and roughly 60 points in lower-rated schools (Tables 4 and 6). The exact campus values are listed in Table 6.

DISCUSSION

This study sought to explore how accountability rating systems and opportunity structures create multilayered equity challenges within the same school district. Further, the current study sought to better understand whether the statewide policies developed to improve college readiness among Texas High School Students translate into successful outcomes within a specific Texas school district, the Fort Bend Independent School District.

Based on an examination of the extracted data, the highly touted "B" rating for the Fort Bend Independent School District significantly masks and serves to cover-up multiple inequities among all individual schools within the district. This masking effect is clearly demonstrated in the current study's findings, where FBISD's overall "B" rating conceals the demographic sorting patterns that relate to individual schools' performance levels. The district's focus on presenting higher-level aggregate data obscures the fact that A-rated schools such as Clements predominantly serve the majority of Asian students (55.5%), while F-rated schools such as Willow Ridge serve mainly African American (63.7%) and Hispanic (31.4%) students.

This pattern of emphasizing the aggregate measures that hide disparities between student demographics is problematic because it masks systemic inequities, prevents targeted interventions, and can lead to flawed decision-making. When data are aggregated, positive outcomes for one group can obscure negative outcomes for others, creating a misleading picture of overall success (Jansen et al., 2022). The federal education system has long recognized that aggregated data "can result in schools and districts losing sight of important information about smaller student populations" (National Forum on Education Statistics, 2016).

This failure to expose and address inequality manifests in several critical ways based on the work of Camara et al., (2024), including: 1) hiding systemic issues, 2) overlooking marginalized students, and 3) a

lack of checks and balances for structural inequities. As the data suggests, the high average test score for the Fort Bend ISD is concealing the fact that little has been done to close gaps for African American and lower SES students as their performance metrics have remained relatively consistent. Importantly, without districts focusing more heavily on the disaggregated data, educators and policymakers may find it difficult to recognize or be forced to acknowledge that a problem exists, let alone address it. Additionally, given that a focus on the aggregates serve to hide the specific metrics for marginalized groups, the unique challenges faced by the most vulnerable students are likely not being properly addressed which allows the inequities to continue. Further, only emphasizing certain data at a superficial level in order to showcase higher overall scores, means that the root causes of educational inequality (i.e., biased discipline practices or unequal access to resources) are never uncovered (Camara et al., 2024).

The study's graduation versus college readiness gaps further highlights how aggregate measures mask critical inequities within the district. Although the FBISD maintains high graduation rates across demographic groups, specifically focusing on low-performing groups such as African American (93%) and Hispanic students (87%), college readiness rates (45%) displays a dramatically different story that an overall aggregate approach overshadows. This 43-to-48-point gap suggests that aggregate graduation metrics provide false reassurance about student preparation while masking the reality that nearly half of graduating students from these demographic groups lack college-readiness skills. This further suggests that although the district's graduation requirements successfully move students to diploma completion, the system fails to fully ensure through targeted programming that they acquire the knowledge and skills necessary for post-secondary education attainment.

Practical Implications

This study's findings have several practical implications for best practice in addressing equity challenges. Based on the exploratory data findings, district-based practices should be developed to enable extensive institutional changes to address the complex equity issues affecting students based on race (47-point differences), socioeconomic status (13-point differences), language proficiency (31-point differences), and attendance patterns. Importantly, local and international examples demonstrate that significant progress in educational equity is achievable. For example, a systematic review of 27 studies showed that effective interventions to close achievement gaps in disadvantaged student populations are tailored to local and group characteristics, which are focused on specific skills such as reading and writing, comprehensive school models with enhanced staff and student relationships, and pedagogical approaches such as IB programs (Cabral et. al., 2023). Further, countries such as Canada, Norway, and Estonia, which have consistently ranked high in providing educational equity, can serve as critical examples of successful policy, as they understand that educational equity requires a holistic approach that tackles deeper economic and social inequalities affecting students' lives both inside and outside of school (D'Inverno et al., 2025).

With these examples in mind, it may be important for the Fort Bend ISD to consider implementing three immediate measures, including separate and visible performance reporting for individual schools and

targeted programs to address resource distribution problems, and attendance-based programs, because students who frequently miss school tend to perform poorly in college. In addition, long-term solutions could focus on addressing educational segregation between schools, as economic status directly impacts student achievement levels, ranging from 18.3% in Clements to 79.3% in Willow Ridge. The district should consider developing better support for English learners and community-based solutions to eliminate demographic based school segregation. Additionally, sometimes non-findings are, in fact, findings. Given that there are no distinct outcomes reported based on teacher experience, this suggests that other factors, including race/ethnicity and socioeconomic status, are currently more important.

Future Research

As with other exploratory investigations, this study was not free from limitations, which provides opportunities for future research endeavors. First, a key limitation of this study was the lack of robust longitudinal data connecting high school readiness indicators to college graduation and career progression. Although there are longitudinal data on high school graduation and college completion, these data do not account for the inequities that have been present for several years. The current study also requires extended data to draw clearer conclusions regarding these impacts. In addition, as noted in the data collection section, certain safeguarded raw data, such as individual standardized test scores, grade point averages, and other sensitive data points are protected by FERPA regulations. Given that this type of raw data were unavailable for this study, the descriptive analysis focused on the percentages that were reported by TARP and lacked the ability for more robust regression and multivariate analyses. Future research should seek to obtain some of these data points while abiding by all FERPA regulations in the process.

Furthermore, given that this was an exploratory study using secondary data, the findings and implications provide an opportunity to further examine these topics further. For example, CCMR indicators provide great insight into how high school graduates will perform in college, careers, or the military beyond high school. However, examining CCMR alone appears to provide an incomplete picture of school ratings.

Future studies should also examine how opportunity gaps manifest within schools through course placement, teacher interactions, access to college counseling, and peer networks. Other areas to consider include college readiness outcomes between high-performing schools (Clements: A, Travis: B) and struggling schools (Thurgood Marshall: D, Willow Ridge: F) when controlling for demographic composition. Special consideration should be given to analyzing the achievement gaps of students who were in elementary and middle school students during the COVID-19 pandemic to determine the additional support services they may need to become successful high school graduates. Finally, future studies could incorporate machine learning methods to integrate the aforementioned measures into the CCMR standard.

CONCLUSION

The purpose of this study was to explore how accountability rating systems and opportunity structures create multilayered equity challenges within the same school district, masked by the overall district rating. This exploratory analysis of the Fort Bend Independent School District revealed that the district's overall "B" rating significantly conceals profound inequities among individual schools and student populations. The study findings show that A-rated schools predominantly serve Asian students, while F-rated schools mainly serve African American and Hispanic students, creating a system of educational segregation hidden beneath aggregate success metrics.

An even more concerning finding revealed in this was a critical gap between graduation rates and college readiness, where nearly half of graduating African American and Hispanic students lack college-readiness skills despite high graduation rates. This suggests that current accountability systems provide false reassurance about student preparation, while failing to address the systemic inequities that determine long-term educational outcomes.

Providing equal and equitable opportunities for education to students is fundamental in promoting social justice because its impact is long lasting. However, as this study shows, inequities in educational attainment continue to persist even within districts that appear successful on the surface. These findings call for urgent attention to disaggregated data reporting, targeted interventions, and comprehensive approaches that address both immediate resource distributions and long-term segregation patterns. Only through such focused efforts can districts like the FBISD move beyond the illusion of equity toward genuine educational justice for all students.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my research mentor, Dr. Lindsey Darvin, for her expert guidance and support throughout this paper.

REFERENCES

Adelman, C. (2006). *The toolbox revisited: Paths to degree completion from high school through college*. U.S. Department of Education.
<https://www2.ed.gov/rschstat/research/pubs/toolboxrevisit/toolbox.pdf>

American Recovery and Reinvestment Act of 2009, Public Law 5, U.S. Statutes at Large 123 (2009):115-521. <https://www.congress.gov/bill/111th-congress/house-bill/1/text>

Cabral-Gouveia, C., Menezes, I., & Neves, T. (2023). Educational strategies to reduce the achievement gap: A systematic review. *Frontiers in Education*, 8, Article 1155741. <https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2023.1155741/full>

Camara, E., Safri, A., Ko, C. L., Abdul-Mutakabbir, J. C., Bandali, A., Brown, B. R., ... & Saunders, I. M. (2024). The implications of data aggregation on propagating racial and ethnic disparities within the health care landscape: actionable recommendations and considerations for pharmacists. *Journal of the American Pharmacists Association*, 64(1), 34-38. <https://doi.org/10.1016/j.japh.2023.10.017>

Cheng, H. G., & Phillips, M. R. (2014). Secondary analysis of existing data: opportunities and implementation. *Shanghai archives of psychiatry*, 26(6), 371.

Conley, D. T., Hiatt, E., McGaughy, C., Seburn, M., & Venezia, A. (2010, April). *Improving alignment between postsecondary and secondary education: The Texas College and Career Readiness Initiative*. American Educational Research Association.

Cumpton, G., Schexnayder, D., King, C. T., & Stolp, C. (2012). *Factors associated with education and work after high school for the classes of 2008 and 2009: A research report of the Central Texas Student Futures project*. Ray Marshall Center for the Study of Human Resources, University of Texas at Austin. <http://hdl.handle.net/2152/20410>

Dragoset, L., Thomas, J., Herrmann, M., Deke, J., James-Burdumy, S., Graczewski, C., Boyle, A., Tanenbaum, C., Giffin, J., & Upton, R. (2016). *Race to the Top: Implementation and relationship to student outcomes: Executive summary (NCEE 2017-4000)*.

National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. https://ies.ed.gov/sites/default/files/migrated/nces_pubs/ncee/pubs/20174001/pdf/20174000.pdf

Every Student Succeeds Act (ESSA) of 2016, Pub. L. No. 114-95, § 129 Stat. 1802. (2016).

Fort Bend Independent School District. (2025). *District information*. <https://www.fortbendisd.com/fortbendisd>

Fort Bend County. (2025). Schools and Education. <https://fortbendcounty.com/why-fort-bend/schools-education/>

Gallardo, C. A. (2024). College preparation of U.S. high school students, the dual enrollment/early college program model, and impact on educational administration and stakeholders. *The Journal of School Leadership*. <https://doi.org/10.1177/10526846241292631>

Ghimire, N. (2024). Understanding disparities: Examining demographic, socioeconomic, and linguistic impacts on U.S. students' outcomes in reading, math, and science. <https://doi.org/10.31124/advance.24226158.v1>

Ghosh, S. S. (2024). Navigating educational inequities in the USA: A statistical analysis of socio-economic and cultural barriers faced by young adults in formal education. *Studies in the Education of Adults*. <https://doi.org/10.1080/02660830.2024.2397824>

D'Inverno, G., Polo, C., Sicilia, G., & Simancas, R. (2025). International differences in educational equity: An assessment using the Benefit of the Doubt model. *Socio-Economic Planning Sciences*, 99, 102206.
https://www.sciencedirect.com/science/article/pii/S0038012125000552?ref=pdf_download&fr=R&R-2&rr=97b7901f4b70be93

Hanson, M. (2025, February 8). *U.S. public education spending statistics*. EducationData.org.
<https://educationdata.org/public-education-spending-statistics>

HB 22 (2017): Tex. Educ. Code § 39.053 (2017).
<https://capitol.texas.gov/tlodocs/85R/billtext/html/HB00022F.htm>

Hsin, A., & Xie, Y. (2014). Explaining Asian Americans' academic advantage over whites. *Proceedings of the National Academy of Sciences of the United States of America*, 111(23), 8416–8421.
<https://doi.org/10.1073/pnas.1406402111>

Holzman, B., Lewis, B., Kennedy, C. C., Guo, W., & Stroub, K. J. (2024). Equalizing opportunities or reproducing inequalities? Tracing the path from college prep course access to postsecondary student success. <https://doi.org/10.31235/osf.io/crha4>

Jansen, B. J., Salminen, J., Jung, S. G., & Almerekhi, H. (2022). The illusion of data validity: Why numbers about people are likely wrong. *Data and Information Management*, 6(4), 100020.
<https://doi.org/10.1016/j.dim.2022.100020>

Mellor, M., Cain, M., Miller, J., & Williams, H. (2025). *Texas College, Career, and Military Readiness Indicator Study Final Report*.
<https://tea.texas.gov/academics/college-career-and-military-prep/career-and-technical-education/ccmr-indctrssstudyfinalrprt-508.pdf>

Maisuria, A., & Lally, C. (2024). Education: Inequalities and attainment gaps.
<https://doi.org/10.58248/hs85>

Naim, A. (2025). Equity across the educational spectrum: Innovations in educational access crosswise all levels. *Frontiers in Education*, 9, 1499642. <https://doi.org/10.3389/feduc.2024.1499642>

National Commission on Excellence in Education. (1983). *A Nation at Risk: The Imperative for Educational Reform*. Washington, D.C.: United States Department of Education.

National Assessment of Educational Progress (NAEP). (2025). *The Nation's Report Card*.
<https://www.nationsreportcard.gov/>

National Center for Education Statistics. (2024). *Fast facts: High school graduation rates*. U.S. Department of Education. <https://nces.ed.gov/fastfacts/display.asp?id=805>

National Center for Education Statistics. (2025). *Public school revenue sources*.
<https://nces.ed.gov/programs/coe/indicator/cma/public-school-revenue>

National Forum on Education Statistics. (2016). *Forum guide to collecting and using disaggregated data on racial/ethnic subgroups* (NFES 2017-017). U.S. Department of Education, National Center for Education Statistics. <https://nces.ed.gov/pubs2017/NFES2017017.pdf>

No Child Left Behind (NCLB) Act of 2001, Pub. L. No. 107-110, § 115 Stat. 1425 (2002).
<https://www.congress.gov/107/plaws/publ110/PLAW-107publ110.pdf>

Phillips, D. R., & Kozol, J. (2023). Examining *Savage Inequalities: Children in America's Schools* by Jonathan Kozol: A critical analysis of educational disparities and the call to action. *International Journal of Science and Research*. <https://doi.org/10.21275/sr23906001806>

Pivovarova, M., Amrein-Beardsley, A., & Geiger, T. (2024). What's in a school grade? Examining how school demographics predict school A-F letter grades. *Practical Assessment, Research & Evaluation*, 29(12). <https://doi.org/10.7275/pare.2039>

Race to the Top Act of 2011, S. 844--112th Congress. (2011). <https://obamawhitehouse.archives.gov/issues/education/k-12/race-to-the-top>

Reed, S., Hurt, A., Kurlaender, M., Luu, J., & Merritt, C. (2023, July). *Inequality in academic preparation for college* [Report]. Policy Analysis for California Education. <https://edpolicyinca.org/publications/inequality-academic-preparation-college>

Sakamoto, A., Goyette, K. A., & Kim, C. (2009). Socioeconomic attainments of Asian Americans. *Annual Review of Sociology*, 35(1), 255-276. Smith, J., Hurwitz, M., & Avery, C. (2017). Giving college credit where it is due: Advanced placement exam scores and college outcomes. *Journal of Labor Economics*, 35(1). <https://doi.org/10.1086/687568>

Souto-Maior, J. M., & Shroff, R. (2024). Differences in academic preparedness do not fully explain Black–White enrollment disparities in advanced high school coursework. *Sociological Science*, 11, 138-163. <https://doi.org/10.15195/v11.a6>

Strelko, A., Strietholt, R., & Steinmann, I. (2023). Mind the gap... but which gap? The distinctions between social inequalities in student achievement. *Social Indicators Research*, 170(2), 399-425.. <https://doi.org/10.1007/s11205-023-03196-5>

Texas Education Agency. (2005). 2004 comprehensive annual report on Texas public schools (Document No. GE05 601 04). Austin, TX: Author. <https://tea.texas.gov/reports-and-data/school-performance/accountability-research/companual2004.pdf>

Texas Education Agency. (2017). *Every Student Succeeds Act*. <https://tea.texas.gov/about-tea/laws-and-rules/essa>

Texas Education Agency. (2017). House Bill 22 overview and expected timeline for implementation. <https://tea.texas.gov/about-tea/news-and-multimedia/correspondence/taa-letters/house-bill-22-overview-and-expected-timeline-for-implementation>

Texas Education Agency. (2024). *Federal Report Card: Closing the Gaps domain – Fort Bend Independent School District*. Retrieved from <https://www.fortbendisd.com/cms/lib/TX01917858/Centricity/ModuleInstance/215767/ASE%20Federal%20Report%20Card%202024.pdf>

Texas Education Agency. (2024). *2024 accountability manual for Texas public school districts and campuses*. Austin, TX. <https://tea.texas.gov/texas-schools/accountability/academic-accountability/performance-reporting/2024-accountability-manual-full.pdf>

Texas Higher Education Coordinating Board. (2004, July). *Closing the gaps by 2015: 2004 progress report* (ERIC Document Reproduction Service No. ED483979). <https://files.eric.ed.gov/fulltext/ED483979.pdf>

The Texas Higher Education Coordinating Board. (2015). *60×30TX: Texas Higher Education Strategic Plan: 2015-2030*. Austin, TX: Texas Higher Education Coordinating Board.
<https://files.eric.ed.gov/fulltext/ED573001.pdf>

Thattai, D. (2001). A history of public education in the United States. *Journal of Literacy and Education in Developing Societies*, 1(2), 2001–2011. Retrieved from
https://www.researchgate.net/publication/321179948_A_History_of_Public_Education_in_the_United_States_Editorial_Summary

U.S. Department of Education. (2004). *No Child Left Behind: A toolkit for teachers*.
<https://files.eric.ed.gov/fulltext/ED483139.pdf>

U.S. Department of Education. (2025). Federal Role in Education.
<https://www.ed.gov/about/ed-overview/federal-role-in-education>