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​
ABSTRACT​
​
Dark matter remains to be one of the most speculative and mysterious substances from our current 
perspective in astrophysics. This paper will aim to provide educated hypotheses on the fermionic particle 
which makes up dark matter, by calculating the lower bound of the particle mass in an average dwarf 
spheroidal galaxy. This bound can be obtained through deriving the Escape Velocity based on calculations 
regarding Yukawa forces between dark matter particles. This can be done using the Pauli Exclusion 
Principle regarding fermionic particles to determine the mass density of the galaxy. This mass density can 
be calculated using models of the Jeans Analysis and Stellar Kinematics employing the Poisson Equation 
and Newton's Shell Theorems. 

Solving dark matter can answer some of our universe's most important questions. Index Terms -Jeans 
Equation, Yukawa Potential, Escape Velocity, Dark Matter Halo 

 

INTRODUCTION 

Galaxies are huge collections of stars, planets, gas, and dust which are bound together by gravity. Each 
celestial body, whether a star, a stellar black hole, or a rogue planet, is bound to the centre of the galaxy in 
which they reside. In the galactic centre lies a supermassive black hole, usually millions of times more 
massive than our own star, the Sun. In other orbital systems, such as our solar system, the immense 
gravitational force exerted by our Sun causes everything in it to revolve around. However, in galaxies this 
remains untrue. In our Milky Way, the supermassive black hole at the centre, Sagittarius A*, contributes 
only 0.01 percent of the mass of the whole galaxy. Yet every celestial body revolving around the galactic 
centre does so with immense speeds. Why? This question led to a hypothesis of a new substance located 
within galaxies, known as dark matter. However, the particles which make up dark matter remain 
speculative to this very day. 

In order to provide detailed hypotheses as to what subatomic particle dark matter is made up of, certain 
properties of said particle have to be calculated. These include the mass, the charge, and the spin. The 
former is the most important, as it influences dark matter's gravitational force. The lower bound of the 
mass (also referred to as the Gunn-Tremaine Bound, which applies only to fermionic particles with 
half-integer spins) can be easily derived after the Yukawa Force between the particles is calculated. 
Yukawa forces are the forces created by the force potential (denoted by V) within a set of particles, which 
requires the knowledge of three parameters. These are the force's magnitude (given by the standard 
formula denoted by Kepler), the force's range (denoted by the Greek letter Lambda, which is 
exponentiated against Euler's constant) and the force's strength relative to the inward gravity (denoted by 
the Greek letter Alpha). 
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There are two ways for this to be done. One is the Pauli Exclusion Principle (which states that no two 
fermionic particles with half-integer spins can occupy the same quantum state). The other is Liouville's 
Theorem (which can only be used if the phase space distribution is known). Both methods are equally 
tangible, both concluding in different variants of the Jeans Equation. This paper will be using the former 
in its calculations, due to its simplicity and easy derivation of the escape velocity and fewer assumptions. 
This is done by modifying the standard escape velocity of a body via Newton's Shell Theorem, using the 
Jeans. This gives us an integral equation in terms of the radius of the dark matter halo to infinity. Different 
assumptions are used to calculate this, notably Alvey et al. 2.1.1, through the Zero Collision Boltzmann 
Equation combined with the Poisson Equation, This ultimately derives a formula in terms of the spherical 
tracer density (function  ) of the dark matter halo. This is made under the assumption that the Stellar 𝑉(𝑟)
component is in dynamic equilibrium inside the halo. textitDi Paolo et al. later assumes this to then 
perform further calculations, initally regarding the anisotropy as zero, then classifying it as a "nuisance 
parameter" (i.e. a parameter which alters the result of the equation, but doesn't have self-sustaining 
values). In their Jeans Analysis, the anisotropy is  (therefore the radial and tangential velocity 1 − 𝑉𝑟/𝑉𝑡
dispersions are equal). 

The identity of Dark Matter could solve many of astrophysics' most pondered​
questions. It could explain in greater detail how the universe originated. This is due to the fact that over a 
quarter of CMBR (Cosmic Microwave Background Radiation) is emitted by matter with does not emit 
visible light. It could broaden our understanding of how the early universe was like, and how subatomic 
matter was first created. The high density of dark matter particles could explain how smaller fermionic 
particles bound together. The identity of dark matter could broaden our understanding of matter itself, 
about the different types of fermionic particles. It could help us understand the properties of more 
unknown particles, such as higher-mass fermions. It could help us understand how galaxies were formed, 
with each different arrangement of stars and other celestial bodies, how the stars revolve around the 
galactic centre with such speeds (this being one of the first questions to initiate the hypothesis of dark 
matter, binding stellar mass in galaxies). Solving Dark Matter would help us answer a multitude of 
questions about our universe and expand our understanding of both particle physics and astrophysics. 

 

INTRODUCTION 
This section will utilise the Jeans and aforementioned force potentials to obtain an integral equation for 
the lower bound of the mass of a dark matter particle. Here are the symbols for each quantity employed in 
this section: 

Table 1: Table of quantities used in Section 2 
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Quantity Name Quantity Symbol Quantity Unit 

Gravitational Potential  Φ
𝐺

 (2.1) and  (2.2 to 𝐽/𝑘𝑔 𝐽/𝑀
⊙

2.4) 

Density Function (2.1)  ρ  𝑘𝑔/𝑚−3

Density Profile (2.1)  𝑣  𝑘𝑔/𝑚−3

Third-Dimensional Velocity  𝑣‾  𝑚/𝑠

Stellar Anisotropy  β * 

Distance from Halo's Center 
to Chosen Body  𝑟  𝑝𝑐

Halo Radius  𝑅  𝑝𝑐

Halo Mass M  𝑀
⊙

Density Profile (2.2 to 2.4)  ρ  𝑀
⊙

𝑘𝑝𝑐−3

Yukawa Potential  Φ
𝑌

 𝐽/𝑀
⊙

Yukawa Force Strength  α * 

Yukawa Force Range  λ  𝑘𝑝𝑐

Net Potential  Φ
𝑛𝑒𝑡 

 𝐽/𝑀
⊙

Escape Velocity  𝑉
𝑒𝑠𝑐   𝑚/𝑠

Mass Profile  𝑚  𝑀
⊙

Lower Mass Bound  𝑀
𝐿  𝑘𝑔

 

The Jeans Equation 

Before beginning this segment, it is important to clarify that the following calculations have been 
performed on the assumption of no net rotation (i.e. the radial and tangential velocities are equal) as was 
done in Di Paolo et. al's paper, and in Jo Bovy's textbook. To maintain continuity and ensure our process 
is easily understandable and replicable, we have followed their path and similarly regarded the net 
rotation to be zero. 

The first step required to calculate the lower bound of the mass of a standard Dark Matter particle is 
through the Jeans Equation. The Jeans Equation is derived from the Collisionless Boltzmann Equation, 
also known as the Vlasov Equation. This equation is used to describe the behaviour of the distribution 
function of subatomic particles in motion under the influence of the gravitational force. The distribution is 

January 2026 
Vol 3. No 1. 

Oxford Journal of Student Scholarship 
www.oxfordjss.org 

175 



Calculating the Escape Velocity and Lower Mass Bound of a Body within a Dark Matter Halo 
 

written in the form . Here,  and  represent Phase-space Cartesian Coordinates of the particles, 𝑓(𝑥, 𝑣, 𝑡) 𝑥 𝑣
and  represents the time in which the number of bodies in a differentiably small volume are present. This 𝑡
equation is combined with the Poisson Equation, which determines the gravitational field strength in a 
random mass distribution, in this scenario a phase-space distribution. This subsection will aim to review 
the role of the Jeans Equation by providing a brief derivation. The Poisson is then derived from the 
Laplace Equation, which is denoted by: 

 𝐹(𝑥) =− 𝑚∇Φ
𝐺

(𝑥)#(1) 

Where  represents the Gravitational Potential. This equation is then rewritten by allocating the Φ
𝐺

(𝑥)
Laplace Operator to one side and substituting Newton's Law of Gravitation to obtain the following: 

 ∇2Φ
𝐺

(𝑥) = 4π𝐺ρ(𝑥)#(2) 

This equation can also be modified for a self-consistent system. The density function  can be ρ(𝑥, 𝑡)
integrated to obtain the Poisson in terms of , thus giving: 𝑓(𝑥, 𝑣, 𝑡)

 ∇2Φ
𝐺

(𝑥, 𝑡) = ∫  𝑑𝑣𝑓(𝑥, 𝑣, 𝑡)#(3) 

From here, it is important to note that the Collisionless Boltzmann Equation is applicable for any 
collisionless system, not just those of self-consistency. In terms of the previous Cartesian Coordinates, we 
would obtain: 

 ∂𝑓(𝑥,𝑣,𝑡)
∂𝑡 + 𝑣 ∂𝑓(𝑥,𝑣,𝑡)

∂𝑥 + 𝑎 ∂𝑓(𝑥,𝑣,𝑡)
∂𝑣 = 0#(4) 

Since , we could rewrite the equation as: 𝑎 =−
∂Φ

𝐺

∂𝑥

 ∂𝑓(𝑥,𝑣,𝑡)
∂𝑡 + 𝑣 ∂𝑓(𝑥,𝑣,𝑡)

∂𝑥 +
∂Φ

𝐺

∂𝑥
∂𝑓(𝑥,𝑣,𝑡)

∂𝑣( ) = 0#(5) 

This results in the Collisionless Boltzmann equation, written in terms of , and . The Jeans can be 𝑥, 𝑣, 𝑡 Φ
𝐺

obtained from this by integrating over , which gives: 𝑣

 ∫  𝑑𝑣 ∂𝑓(𝑥,𝑣,𝑡)
∂𝑡 + ∫  𝑑𝑣(𝑣) ∂𝑓(𝑥,𝑣,𝑡)

∂𝑥 +
∂Φ

𝐺

∂𝑥 ∫  𝑑𝑣 ∂𝑓(𝑥,𝑣,𝑡)
∂𝑣 = 0#(6) 

From here, we must take into account the density profile  and the third-dimensional velocity , with 𝑣 𝑣‾
these derivations respectively: 

 𝑣(𝑥) = ∫  𝑑𝑣𝑓(𝑥, 𝑣)#(7) 

 𝑣‾(𝑥) = 1
𝑣(𝑥) ∫  𝑑𝑣(𝑣)𝑓(𝑥, 𝑣)#(8) 
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From the previous integral equation, the final term disappears as  approaches zero (i.e., when  𝑓 𝑣
approaches  ) thus resulting in: ∞

 ∂𝑣(𝑥)
∂𝑡 + ∇[𝑣(𝑥)𝑣‾(𝑥)] = 0#(9) 

This is the continuity equation for the density . Thus, after integrating over , we can multiply both 𝑣(𝑥) 𝑣
equation (6) and equation (9) with the velocity component , and then subtracting the former from the 𝑣‾

𝑗
latter, allows us to obtain the Jeans in Cartesian form. 

 𝑣
∂𝑣‾

𝑗

∂𝑡 + 𝑣‾
𝑖

∂𝑣‾
𝑗

∂𝑥‾
𝑖

+
∂Φ

𝐺

∂𝑥‾
𝑗

( ) +
∂𝑣σ

𝑖𝑗
2

∂𝑥‾
𝑖

= 0#(10) 

This is the Jeans Equation in terms of rectangular Cartesian Coordinates. Substituting those with Polar 
Coordinates allows us to get: 

 
𝑑 𝑣𝑣

𝑟
2( )

𝑑𝑟 + 𝑣 𝑑Φ
𝑑𝑟 +

2𝑣
𝑟
2−𝑣

θ
2−𝑣

ϕ
2

𝑟
⎡⎢⎢⎣

⎤⎥⎥⎦
#(11) 

Substituting derived quantities, this equation can be simplified by substituting values such as the 
anisotropy  : β

 β =
𝑣

θ
2+𝑣

ϕ
2

2𝑣
𝑟
2

#(12) 

And we can also substitute , in our equation, which is: σ
𝑟

 σ
𝑟
2 = 𝑣 𝑣

𝑟
2( )#(13) 

Thus, resulting in the final product of: 

 
𝑑σ

𝑟
2

𝑑𝑟 +
2βσ

𝑟
2

𝑟 =− 𝑣 𝑑Φ
𝑑𝑟 #(14) 

This is the final Jeans Equation which will be used by this paper for further calculation. The Jeans 
Equation is used in various aspects of stellar kinematics. Here, we will be using to to calculate the density 
profile, which then can be used to calculate the force potentials using Newton's Shell Theorems. 

The Gravitational Potential 

To calculate the gravitational potential of the halo, we must use Newton's Shell Theorems.​
The First Shell Theorem states that any body inside a uniform spherical shell experiences no net 
gravitational force from that shell.​
The Second Shell Theorem states that any body outside a uniform spherical shell experiences a 
gravitational force such that all the shell's mass is concentrated at its centre.​
Thus, the gravitational potential can be written as: 

 Φ
𝐺

(𝑟 > 𝑅) =− 𝐺𝑀
𝑟 Φ

𝐺
(𝑟 < 𝑅) =− 𝐺𝑀

𝑅 #(15) 
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Where M is the mass of the shell,  is the radius of the shell, and  is the distance of the particle body 𝑅 𝑟
from the shell's centre. In the context of dark matter halos,  represents the range of the phase-space 𝑅
distribution. We can take the mass of the shell to be it's volume  multiplied by it's density , 4π𝑅2 ρ(𝑅)
giving us: 

 𝑀 = 4π𝐺ρ(𝑅)∆𝑅#(16) 

Thus, we can write  as: 𝑑Φ
𝐺

 𝑑Φ
𝐺

=− 𝐺
𝑟 4π𝐺ρ(𝑅)𝑑𝑅, 𝑟 > 𝑅𝑑Φ

𝐺
=− 𝐺

𝑅 4π𝐺ρ(𝑅)𝑑𝑅, 𝑟 < 𝑅#(17) 

If we integrate each equation over all , we will obtain the potential for all shells, which becomes: 𝑅

 Φ
𝐺

=− 4π𝐺 1
𝑟

0

𝑟

∫   𝑅2ρ(𝑅)𝑑𝑅Φ
𝐺

=− 4π𝐺
𝑟

∞

∫   𝑅ρ(𝑅)𝑑𝑅#(18) 

Thus, the final net gravitational potential becomes: 

 Φ
𝐺

=− 4π𝐺 1
𝑟

0

𝑟

∫   𝑅2ρ(𝑅)𝑑𝑅 + 4π𝐺
𝑟

∞

∫   𝑅ρ(𝑅)𝑑𝑅⎡⎢⎢⎣

⎤⎥⎥⎦
#(19) 

This will later be added to the Yukawa Potential for the halo to calculate the Escape Velocity for an 
internal body in Section 2.4. 

The Yukawa Potential 

The Yukawa Potential is the potential of the Yukawa Force, which is a force between two fermionic 
particles that mediates their exchange. The potential for a single particle is written as: 

 Φ
𝑌

=− α
𝐺𝑚

1
𝑚

2

𝑅 𝑒−𝑎𝑟#(20) 

Here,  represents the overall strength of the force. For the sake of simplification, we have also defined α
the variable  as , where  is the overall range of the force, expressed in parsecs (pc). For a spherical 𝑎 1/λ λ
shell, the potential must be integrated. The dark matter halo itself can be treated as a concentric series of 
shells according to the Pauli Exclusion principle. Hence, according to this, the net Yukawa Potential can 
be expressed as: 

 𝑑Φ
𝑌
(𝑅) = 𝐴𝑠𝑖𝑛ℎ⁡(𝑎𝑅) 𝑒−𝑎(𝑅−𝑟)

𝑟 ,  𝑟 > 𝑅#(21) 𝑑Φ
𝑌
(𝑅) = 𝐴𝑠𝑖𝑛ℎ⁡(𝑎𝑟) 1

𝑟 ,  𝑟 ≤ 𝑅#(22) 

Here,  is a finite value obtained as  approaches zero (i.e. when the distance between the halo's centre 𝐴 𝑟
and the body inside said halo approaches zero).  is the overall strength of the force, while the 𝐴𝑠𝑖𝑛ℎ⁡(𝑎𝑅)
exponential  accounts for the fall-off outside the shell. If we assume that  approaches zero, this 𝑒−𝑎𝑟 𝑎
implies that  approaches one  and  approaches zero (  ). Hence, 𝑒𝑎𝑅 ∵𝑒0 = 1( ) 𝑠𝑖𝑛ℎ⁡(𝑎𝑅) ∵𝑠𝑖𝑛ℎ⁡(0) = 0

 𝐴𝑠𝑖𝑛ℎ⁡(𝑎𝑅) → − 𝐺𝑀#(23) 

Where  is the mass of the halo. The mass can be substituted by the volume times the density: 𝑀
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 𝐴𝑠𝑖𝑛ℎ⁡(𝑎𝑅) → − 𝐺 4π𝑅2ρ(𝑅)∆𝑅( )#(24) 

Moving  to one side, we get: 𝐴

 𝐴 → − 4πα𝐺𝑅2∆𝑅ρ(𝑅)
𝑠𝑖𝑛ℎ⁡𝑎𝑅 #(25) 

From here, we can substitute  in the Yukawa Potential to become the following for , and . 𝐴 𝑅 < 𝑟 𝑅 > 𝑟

 𝑑Φ
𝑌
(𝑅) =− 4απ𝐺

𝑟 𝑅2∆𝑅ρ(𝑅)𝑒𝑎𝑅−𝑎𝑟,  𝑟 > 𝑅#(26) 𝑑Φ
𝑌
(𝐺) =− 4απ𝐺

𝑠𝑖𝑛ℎ⁡(𝑎𝑅)𝑟 𝑅2∆𝑅ρ(𝑅)𝑠𝑖𝑛ℎ⁡(𝑎𝑟),  𝑟 ≤ 𝑅#(27) 

Thus, integrating over all values of R , we can obtain the final equation for the Yukawa Potential: 

 Φ
𝑌
(𝑅) = −4απ𝐺

𝑟⎡⎣ ⎤⎦ 0

𝑟

∫   𝑅ρ(𝑅)𝑒𝑎𝑅−𝑎𝑟𝑑𝑅 +
𝑟

∞

∫    𝑅ρ(𝑅)𝑠𝑖𝑛ℎ⁡(𝑎𝑟)𝑑𝑅
𝑠𝑖𝑛ℎ⁡𝑎𝑅

⎡⎢⎢⎣

⎤⎥⎥⎦
#(28) 

This is analogous to our expression in Section 2.2 for the gravitational force. 

Escape Velocity and Gunn-Tremaine Bound 

Adding the Gravitational Potential and the Yukawa Potential will allow us to get the Escape Velocity of a 
body within the dark matter halo. This is shown using: 

 
𝑉

𝑒𝑠𝑐
2

2 =− Φ
𝑛𝑒𝑡

(𝑅) =− Φ
𝐺

(𝑅) + Φ
𝑌
(𝑅)[ ]#(29) 

Where  represents the net potential, that is, the sum of the Gravitational and Yukawa Potentials. From Φ
𝑛𝑒𝑡 

our derivation in sections 2.2 and 2.3, we can write: 

 
𝑉

𝑒𝑠𝑐
2

2 = 4π𝐺[ 1
𝑟

0

𝑟

∫   𝑅2ρ(𝑅)𝑑𝑅 +
𝑟

∞

∫   𝑅ρ(𝑅)𝑑𝑅( ) +  α
𝑟

0

𝑟

∫   𝑅2ρ(𝑅)𝑒𝑎𝑅−𝑎𝑟𝑑𝑅 +
𝑟

∞

∫    𝑅2ρ(𝑅)𝑠𝑖𝑛ℎ⁡(𝑎𝑟)𝑑𝑅
𝑠𝑖𝑛ℎ⁡(𝑎𝑅)( )] (30) 

Moving  to one side, we obtain: 𝑉
𝑒𝑠𝑐
2

 𝑉
𝑒𝑠𝑐
2 = 8π𝐺[ 1

𝑟
0

𝑟

∫   𝑅2ρ(𝑅)𝑑𝑅 +
𝑟

∞

∫   𝑅ρ(𝑅)𝑑𝑅( ) +  α
𝑟

0

𝑟

∫   𝑅2ρ(𝑅)𝑒𝑎𝑅−𝑎𝑟𝑑𝑅 +
𝑟

∞

∫    𝑅2ρ(𝑅)𝑠𝑖𝑛ℎ⁡(𝑎𝑟)𝑑𝑅
𝑠𝑖𝑛ℎ⁡(𝑎𝑅)( )] (31) 

This is the Escape Velocity of a body inside a dark matter halo. From here, we can use the Pauli Exclusion 
Principle (which states that no fermionic particles with half-integer spins may occupy the same space) to 
obtain an equation for the lower bound of dark matter, also called as the Gunn-Tremaine Bound. From the 
principle, it can be deduced that a self-gravitating body that completely consists of fermionic particles 
possesses a velocity derived from the mass and density profile. This is written as: 

 𝑉
→

=
3 6π2ρ(𝑅)

𝑔𝑚4 #(32) 

The bound can be obtained from the Pauli Exclusion Principle from the following condition: 
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 𝑀
𝐿
(𝑅) ≥ 4 6π2ρ(𝑅)

𝑔𝑉
𝑒𝑠𝑐

(𝑅)3 #(33) 

Substituting the escape velocity with that of the derived expression, we can obtain the final values for the 
lower bound. 

RESULTS 

Coding the Equation 

After we have acquired the final equation for the lower bound, we can code this expression to obtain 
values for the escape velocity in terms of the range  and the strength . Before we begin the (λ) (α)
calculations, we must import the radial and density profile values calculated by Alvey et. al in their code 
repository. The values are stored in the files output_rho.txt for each listed galaxy. In these files contain 
dictionaries for each galaxy. The first column represents the different radial values chosen by Alvey et. al, 
while the following columns contain the corresponding  values. The second column represents the ρ(𝑟)
midpoints of the density profile, and is labelled as "mid" in Alvey's code. The following columns are 
standard deviations "1su", "2su", and so on. Taking the values from each text file output.rho into 
variables: 
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Figure 1: Graph illustrating the density profile of Leo I, with  sigma deviations ± 1

import numpy as np​
r1 = np.loadtxt("/content/output_rho.txt", skiprows=1)​
r2 = np.loadtxt("/content/output_rho.txt.1", skiprows=1)​
r3 = np.loadtxt("/content/output_rho.txt.2", skiprows=1)​
 

From these dictionaries, we must obtain the radial and density profile values individually from Alvey et. 
al's code. To do this, we create functions to obtain the values of r and rho (specifically the midpoints) 
from the text files. We can use the functions load_r(dwarf) and load_rho(dwarf) from Alvey et al.'s 
repository as references: 

def load_r(r):​
 

data = r​
r_data = {'r': data[0, 1]}​
return r_data​
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def load_rho(r):​
data = r​
rho_data = {'mid': data[0, 1]}​
return rho_data​
 

After obtaining the  values, we need to store the data in arrays for calculating the escape velocity: ρ(𝑟)

galaxy_arr = ["LeoI", "LeoII", "Fornax"]​
r_arr = [load_r(r1), load_r(r2), load_r(r3)]​
rho_arr = [load_rho(r1), load_rho(r2), load_rho(r3)]​
print(rho_arr)​
alpha_arr = [10**16, 10**17, 10**18, 10**19, 10**20]​
lambda_arr = [10**-2, 10**0, 10**2, 10**4, 10**6]​
 

Here, we have taken r_arr as an array for the radial values of each galaxy. Likewise, we have taken 
rho_arr for the density profile values. The chosen values in alpha_arr and lambda_arr have been obtained 
from Bogorad et. al's Figure 1. According to Bogorad et. al, 

 α ∝ λ,  λ > 103𝑘𝑝𝑐#(34) 

Thus, for higher order , one must apply lower values for , and vice versa. α λ

for vle in range(0, len(alpha_arr)):​
    alpha = alpha_arr[vle]​
    lambda1 = lambda_arr[vle]​
    CTW = 4*3.14159*6.6743*10**-11​
    CTY = alpha*lambda1/r​
 

After this, we need to calculate the integrands of the gravitational and Yukawa forces. This is done using 
the Simpson's rule (python: scipy.integrate.simpson()) to calculate the integrands for all values in the 
arrays for the values of  and  (since each halo is defined as a series of shells, the different  values 𝑅 ρ ρ(𝑟)
will differ depending on the value of  ). The Heaviside's rule (python: np.heaviside() is used to mark the 𝑅
limits of the integrands (specifically the upper and lower limit of  to collect the values of . Each 𝑟 ρ(𝑅)
integrand for the Gravitational Potential can be defined as follows: 

intg1 = (1/r) * (simpson(CTW * (dictr['r'])**2 * dictrho['mid'] *​
    np.heaviside(r-dictr['r'], 1.0), x = dictr['r']))​
intg2 = simpson(CTW * dictr['r'] * dictrho['mid'] * np.heaviside(dictr['r']-​
    r, 1.0), x = dictr['r'])​
 

However, the integrands of the Yukawa Potential require the specific radius of the halo to be taken to 
account. The reason for this is the values stored in output_rho.txt far exceed the natural dimensions of the 
typical halo (the values reaching to 500 kiloparsecs), although at those lengths the halo would begin to 
decay as the Gravitational​
and Yukawa Forces are too weak to keep it bound. Hence, we will need to truncate the values in 
output_rho.txt: 
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for x in range(0,len(dictr['r'])):​
    if dictr['r'][x] - r >= 0:​
        break​
r_arr_trnc_upper = dictr['r'][0:x]​
r_arr_trnc_lower = dictr['r'][x-1:]​
rho_arr_trnc_upper = dictrho['mid'][0:x]​
rho_arr_trnc_lower = dictrho['mid'][x-1:]​
 

Thus, the first Yukawa integrand can be written as: 

inty1 = simpson(CTW * CTY * (r_arr_trnc_upper)**2 * rho_arr_trnc_upper *​
    2.71418**(r_arr_trnc_upper/lambda1 - r/lambda1) * np.heaviside(r-​
    r_arr_trnc_upper, 1.0), x = r_arr_trnc_upper)​
 

However, there's still an issue. If one were to exponentiate  over a very large number over a certain 𝑥
value, python would register said value as infinity, and thus the net result would approach infinity as well. 
If we were to exponentiate over the inverse of a very large number, it would approach zero. The second 
Yukawa integrand uses the hyperbolic sine, which is written as: 

 𝑠𝑖𝑛ℎ⁡(𝑥) = 𝑒𝑥−𝑒−𝑥

2 #(35) 

Thus, if  were a very large number,  would be infinity and the integrand invalid. Hence, the 𝑥 𝑠𝑖𝑛ℎ⁡(𝑥)
equation needs to be rewritten in negative exponents: 

 𝑠𝑖𝑛ℎ⁡(𝑥)
𝑠𝑖𝑛ℎ⁡(𝑦) = 𝑒𝑥−𝑦( ) 1−𝑒−2𝑥

1−𝑒−2𝑦 #(36) 

Writing this for the integrand in python gives us: 

inty2 = simpson(CTW * CTY * (r_arr_trnc_lower)**2 * rho_arr_trnc_lower *​
    ((2.71418**(y-z))*(1-2.71418**(-2*y))/(1-2.71418**(-2*z))) *​
    np.heaviside(r_arr_trnc_lower-r, 1.0), x = r_arr_trnc_lower)​
 

After deriving the integrands, and choosing a suitable value for  (i.e. the distance between the body and 𝑟
the halo's centre), we get the final code for the escape velocity  of the body. The full repository can be 𝑉

𝑒𝑠𝑐 
found here 

Running the Code 

To test our code, we can use a sample of the radius and density profile value for three galaxies (Leo I, Leo 
II, and Fornax), a chosen value for the radius of integration limit  (say 10), alongside five chosen values 𝑅
of  and , chosen with respect to Bogorad et al.'s Yukawa derivation, as mentioned previously. One must α λ
have 3 ready values for calculation (as mentioned in the coding section); , and . The radius and α, λ 𝑟
density profile values (  and  ) have been given in the code repository in Alvey et al.'s paper in the 𝑅 ρ(𝑅)
output_rho.txt files for each galaxy. After we input the five values of  while keeping  and  constant α λ 𝑟
(let's say  parsecs to match with the bounds in Bogorad et. al, and  parsecs to match λ = 10−5 𝑟 = 0. 1
with the radial values in Alvey et. al's repository, for example) we get: 
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Table 2: Escape Velocity for LeoI,  modified  α λ = 10−6( )
 α(∗)  𝑉

𝑒𝑠𝑐
 𝑚 𝑠−1( )

 1016 45405.508 

 1017 50294.028 

 1018 84898.642 

 1019 232358.950 

 1020 722370.889 

 

Table 3: Escape Velocity for LeoII,  modified  α λ = 10−6( )
 α(∗)  𝑉

𝑒𝑠𝑐
 𝑚 𝑠−1( )

 1016 31050.746 

 1017 40145.409 

 1018 89926.104 

 1019 269883.691 

 1020 848729.775 

 

Table 4: Escape Velocity for Fornax,  modified  α λ = 10−6( )
 α  ∗( )  𝑉

𝑒𝑠𝑐
 𝑚 𝑠−1( )

 1016 83771.324 

 1017 84341.559 

 1018 89845.076 

 1019 132885.392 

 1020 336930.891 

 

We can also perform vice versa, where  remains constant and  is modified: α λ
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Table 5: Escape Velocity for LeoI,  modified  λ α = 104( )
 λ(𝑘𝑝𝑐)  𝑉

𝑒𝑠𝑐
 𝑚 𝑠−1( )

 10−2 522273.689 

 100 3201899.835 

 102 4380168.135 

 104 4483038.760 

 106 4483060.382 

 

Table 6: Escape Velocity for LeoII,  modified  λ α = 104( )
 λ(𝑘𝑝𝑐)  𝑉

𝑒𝑠𝑐
 𝑚 𝑠−1( )

 10−2 606648.558 

 100 2612206.158 

 102 2972895.180 

 104 2986898.989 

 106 2986902.214 

 

Table 7: Escape Velocity for Fornax,  modified  λ α = 104( )
 λ(𝑘𝑝𝑐)  𝑉

𝑒𝑠𝑐
 𝑚 𝑠−1( )

 10−2 251243.158 

 100 3589760.813 

 102 7733458.096 

 104 8371041.096 

 106 8371179.145 
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DISCUSSION 

The modifications of  and  α λ

Based on the final results on the values of the escape velocity and the lower bound, we can compare the 
relationship between  and  and the escape velocity. α λ

 

Figure 2: Graph illustrating the change in  of a dark matter halo in Leo I, Leo II, and Fornax by 𝑉
𝑒𝑠𝑐 

modifying  α λ = 10−6( )
Based on the gradients of the graph,  follows a quasi-parabolic curve. However, as the value of  and 𝑉

𝑒𝑠𝑐 
𝑟

 change, the net difference between the escape velocities also change. Keeping  as 0.1 will cause the λ 𝑟
escape velocity to become too small for python to register, hence we ought to take a larger value, let's say 

. Here, The values of  would cause negligible change to the escape velocity when  : 𝑅 = 1 α λ < 10−4

Table 8: Escape Velocity for LeoI,  modified  α λ = 10−5( )
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 α(∗)  𝑉
𝑒𝑠𝑐

 𝑚 𝑠−1( )
 10−2 39360.29989023125 

 100 39360.29989023134 

 102 39360.299890232236 

 104 39360.29989024127 

 106 39360.29989033159 

 

Before , the change in the escape velocity remains almost constant with respect to the values, with 10−5

the succeeding value being approximately 3.16 x more than the preceding. From  onwards, the 10−5

change in the escape velocity approaches zero at a rapid rate. While substituting  with decimal exponents λ
of 10 between -4 and -5 showcases the rate at which the change in  decreases. Hence, comparing  𝑉

𝑒
𝑠𝑐 α

with  and  with the change of  : 𝑉
𝑒𝑠𝑐

λ 𝑉
𝑒𝑠𝑐

 𝑉
𝑒𝑠𝑐

∝ α2#(37) ∆𝑉
𝑒𝑠𝑐

≈ 𝑘,  λ ∈ 10𝑍: λ > 10−4#(38) 

Another factor to consider is the value of . When , where  is the minimum value 𝑟 𝑟 ≤ 0. 01, 𝑟 ≤ 𝑟
𝑚𝑖𝑛 

𝑟
𝑚𝑖𝑛 

of r in Alvey's dictionary. Thus, there are no real values of  at this range of values of . However, as  𝑉
𝑒𝑠𝑐 

𝑟 𝑟
increases, the change in  likewise approaches zero at a rapid rate. When , the change in 𝑉

𝑒𝑠𝑐
λ = 10 ∗∗− 4

 reaches complete nil: 𝑉
𝑒𝑠𝑐 

 ∆𝑉
𝑒𝑠𝑐

≈ 𝑘,  𝑅 ∈ 10𝑍: 𝑅 > 101#(39) 

However the limiting values of both  and  are interdependent. Decreasing  will cause  to reach 𝑟 λ λ ∆𝑉
𝑒𝑠𝑐

zero at a larger  value, and vice versa.​𝑟
If we execute the same set of code while switching the roles of  and  (i.e.  remains constant and  α λ α λ
varies), this is what we would obtain if  : α = 10−5
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Figure 3: Graph illustrating the change in  of a dark matter halo in Leo I, Leo II, and Fornax by 𝑉
𝑒𝑠𝑐 

modifying  λ α = 104( )
Based on the gradients of the graph,  follows an asymptotic curve. An asymptotic​𝑉

𝑒𝑠𝑐 
curve is a curve that slowly approaches a line but takes an infinite amount of length to reach it. Here, each 
galaxy has it's own range limit, for which after that limit has been crossed,  remains constant. Before 𝑉

𝑒𝑠𝑐 
this limit,  initially increases at a constant rate. Thus, it can be concluded that: 𝑉

𝑒𝑠𝑐 

 𝑉
𝑒𝑠𝑐

∝ λ,  λ > λ
𝑙𝑖𝑚

 𝑉
𝑒𝑠𝑐

≈ 𝑘,  λ > 104 #(41) 

Just like  is also interdependent with R . α, λ

The Gunn-Tremaine Bound 

To calculate the Gunn-Tremaine Bound, we will have to add some extra bits of code into our repository. 
Initially, we will have to define a function that returns the mass bound: 
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def get_gtb(galaxy,dictr,dictrho,r,alpha,lambda1):​
 

Now, since the formula for the bound requires the density profile , we will need to extract it from ρ(𝑟)
Alvey et. al's repository, based on the distance between the body and the halo's centre  : 𝑟

rho_SI = None​
    for x in range(0,len(dictrho['mid'])):​
        if dictr['r'][x] - r >= 0:​
            if dictr['r'][x] - r > r - dictr['r'][x-1]:​
                    rho_kpc = dictrho['mid'][x-1]​
                rho_SI = rho_kpc * 6.7696 * 10**-29​
            else:​
                rho_kpc = dictrho['mid'][x]​
                rho_SI = rho_kpc * 6.7696 * 10**-29​
            break​
 

Afterwards, we can safely code the formula to calculate the escape velocity: 

vesc_val = get_vesc(galaxy,dictr,dictrho,r,alpha,lambda1)​
Mass_Bound = ((6 * 3.14159**2 * rho_SI)/(2 * vesc_val**3))**0.25​
print(Mass_Bound)​
 

Henceforth, we have obtained the final code for calculating the Lower Mass Bound, with custom  and  α λ
values. The same repository here can be used to thoroughly calculate the lower mass bound  in 𝑀

𝐿
kilograms. 

To convert these values from SI units to electronvolts, we need to use the famous Theory of Relativity: 

 𝐸 = 𝑚𝑐2#(42) 

From this, we can calculate the Joule energy of 1 kg to be . Then, we can divide this by the 9 × 1016

elementary charge  to obtain  electronvolts per every kilogram.​𝑒 5. 6 × 1035

 

CONCLUSION 

To conclude, we have calculated the escape velocity of a body inside a dark matter halo (  ) through 𝑉
𝑒𝑠𝑐

two forces present between the particles: the Gravitational force, and the Yukawa force, the latter 
dependent on the net strength of the force (  ) and the range of the force . After coding the final α (λ)
integral equation, we can obtain values of , as well as the Gunn-Tremaine Bound . These values 𝑉

𝑒𝑠𝑐
𝑀

𝐿
can be modified by changing , and  and can thus derive a pattern as to how the mass of dark matter α, λ 𝑅
halos are reliant on these two parameters through . Based on our findings, we have concluded that  𝑉

𝑒𝑠𝑐 
α

and  follow quasi-parabolic and asymptotic relationships with  respectively, where  is directly λ 𝑉
𝑒𝑠𝑐 

λ
proprotional to the escape velocity until it hits a certain limit . λ

𝑙𝑖𝑚 
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The Yukawa constraints (i.e.  and  ) for the net potential are listed as valid magnitudes given in α λ
Bogorad et al.'s Figure 1 describing self-interactions between the two, allowing for accurate 
measurements of the Yukawa potential. This potential for the halo can be converted into an integrand 
analogous to Jo Bovy's Equation  regarding the net gravitational potential for a series of shells. This 2. 23
permits for  to be calculated through the Law of Conservation of Energy. Thus, we have been able to 𝑉

𝑒𝑠𝑐 
find the relationship between the Escape Velocity  of a body inside a dark matter halo, and the 𝑉

𝑒𝑠𝑐
Yukawa constrains for the force inside the halo. After taking sample values from Alvey et. al's repository, 
particularly the values in output_rho.txt, to finally obtain suitable escape velocities for Leo I, Leo II, and 
Fornax. 

After calculating the escape velocity, we have been able to find the Lower Mass Bound  (also called 𝑀
𝐿

the Gunn-Tremaine Bound) using Alvey et. al's Equation 9 to calculate this bound, and write it in terms of 
electronvolts. 
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