

Current Challenges of CAR-T Cell Therapy in Treating Solid Tumors and Potential Strategies to Overcome Them: A Literature Review

Ngoc Nguyen
ngocnguyenlebao2007@gmail.com

ABSTRACT

This paper synthesizes current literature on the current challenges of CAR T-cell therapy in treating solid tumors and potential solutions. The findings in the study establish limitations and challenges, including how the Tumor Microenvironment (TME) suppresses the functionalities of T-cells and undermines treatment. Antigen heterogeneity, physical barriers, tumor accessibility, CAR T-cell persistence and exhaustion, and on-target and off-tumor toxicity remain critical limitations against the effectiveness of CAR T-cell therapy in treating solid tumors. Some suggested strategies against the limitations include improving CAR T-cell infiltration of the solid tumor walls, integrating inducible suicide genes to reduce toxicity, and dual targeting of solid tumors to minimize the impact of antigen heterogeneity. Understanding the limitations and available solutions for solid tumor treatment underscores the need for further research and development in the future. Insights from the current study reveal the need for future research to focus on how tumor microenvironment modulation can enhance CAR T cell activity, the development of CARs that can identify multiple tumor antigens, and the exploration of matrix-degrading agents in terms of the roles they play in overcoming physical barriers.

INTRODUCTION

Cancer remains one of the major global public health concerns, with incident rates steadily increasing and putting pressure on healthcare systems. Statistics released by the WHO in recent times indicated about 20 million new cancer cases as of 2022, giving an indication of the extent of the burden and the need for more effective interventions urgently [1]. Global projections indicating a 77% increase in new cancer cases by 2050 underscore the importance of developing innovative therapeutic strategies to improve long-term disease outcomes [2]. The above-mentioned general trends have accelerated interest in innovative therapeutic modalities such as CAR T-cell therapy, standing out as one of the most exciting developments in modern oncology.

CAR T-cell therapy involves the genetic modification of T cells with synthetic receptors that allow the specific identification and elimination of tumor cells. The development of this technology represents an

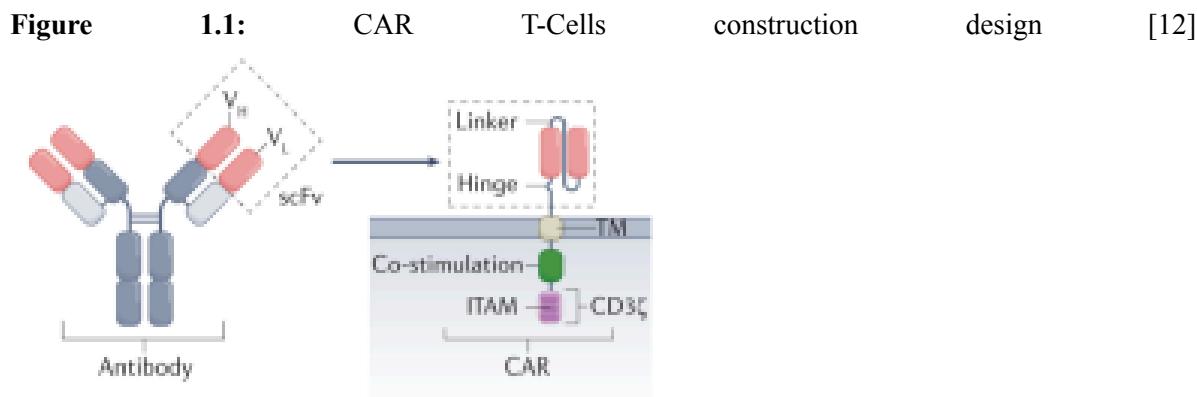
December 2025

Vol 2. No 1.

important step toward overcoming the obstacles presented by traditional cancer therapies. Studies emphasize that further research is necessary in this direction, while underlining that CAR T-cell therapy has already made significant contributions to ensuring better treatment responses in several cancers [3, 4]. Evidence points out that the greatest successes have been seen in hematological malignancies, where CAR T-cell therapy, particularly with CD19-directed constructs, has consistently achieved high remission rates in B-cell lymphomas and leukemias [5]. It has been efficient and durable, too, as evidenced by the detection of up to 80% remission in lymphoblastic leukemia cases treated with CD19 CAR T cells [6, 7]. These results underline the importance of CAR T-cell therapy in the reformation of blood cancer management and the improvement of prognosis for patients suffering from these diseases [8].

Despite such advances, the application of CAR T-cell therapy to solid tumors has been considerably less successful. Solid cancers of the lung, colon, breast, and prostate comprise the majority of cancer morbidity and mortality worldwide but exhibit limited responsiveness to current CAR T-cell approaches. Some key barriers include antigen heterogeneity, the complex and immunosuppressive tumor microenvironment, and physical obstacles that restrict CAR T-cell infiltration and persistence within tumor tissues [9]. These challenges indicate that continued innovation is warranted to optimize the efficacy of CAR T-cell therapy across solid malignancies [8]. Thus, this study endeavors to examine the significant limitations of CAR T-cell therapy in solid tumors and delves into emerging strategies developed with the purpose of enhancing its therapeutic potential.

METHODS

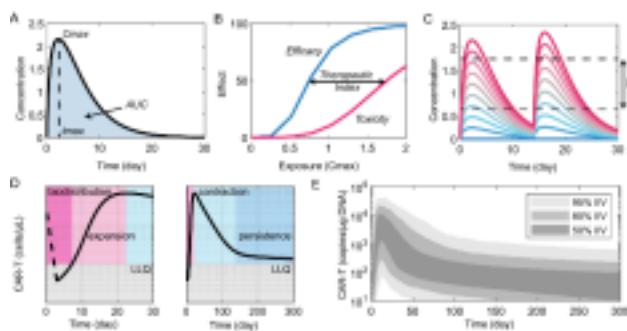

The study reviewed a total of 31 journals, publications, and medical reports selected systematically using specific keywords focusing on cancer treatment, including "CAR T cell therapy," "solid tumor," "hematological malignancies," "tumor microenvironment," "antigen heterogeneity," and "off-target and on-target toxicity." Additional critical words for the search strategy and identification of the data sources included "challenges of CAR T cell therapy" and "ECM degradation." The databases searched included Scopus, PubMed, CINAHL, and Science Direct because they offer comprehensive coverage of topics.

DISCUSSION

Overview of Chimeric Antigen Receptor (CAR) T-cell therapy

The development of CAR T-cell therapy reflects advanced engineering in medicine that involves the

genetic modification of a patient's T-cells to allow the expression of chimeric antigen receptors on the surface. It is a complex process involving the extraction, modification, and binding of CAR-specific proteins. Upon infusion into the patient's body, it motivates cytotoxicity, which plays a central role in destroying cancer cells [10]. In essence, the infusion of CAR T-cells into a patient's body institutes increased body immunity against cancer cells, and Bui et al. [11] underscore that the effectiveness of CAR T-cells relies on their design that incorporates the antigen-binding domain, hinge region, signaling domain, and transmembrane domains. Each of these construct designs plays different functionalities towards optimization of the cell's ability to prevent the growth of cancer cells. Globerson [12], for instance, recognizes how the extracellular antigen-binding domain facilitates recognition and binding to the target cancer cells while the hinge region is critical for achieving spatial configuration.


CD19 Clinical Trial Effectiveness

The increased prevalence of cancer and associated mortalities remains a significant factor influencing the development of new and effective treatment regimens. The development of CAR T-cell therapy highlights the increased emphasis on the need for treatment to reflect specificity and potency against cancer cells and focuses on clinical trials to provide evidence of the effectiveness of CAR T-cell therapy in the treatment of blood cancer [13]. Different clinical trials have demonstrated the efficacy of CD19 CAR T-cell therapy in treating hematological malignancies, including a study focusing on Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia [14]. The study highlighted the effectiveness.

The CAR T cell therapy, as tisagenlecleucel, produced high rates of complete remission. The results indicated durable remission with long-term persistence against lymphoblastic leukemia. The trial's results were also supported by the ZUMA-1 trial, which focused on evaluating the effect of axicabtagene ciloleucel on patients diagnosed with B-cell leukemia [15]. The study's general findings

indicated a 72% efficiency rate when CD19 CAR T-cell therapy is used in the treatment of lymphoma. Further analysis in the Juliet trial, a global experiment focusing on patients with relapsed DLBCL, indicated a 40% achievement in patient remission, validating the efficiency of CD19 CAR T-cell therapy in treating blood cancer [16]. Fundamentally, the success of CD19 CAR T-cell therapy in treating the different types of blood cancer, as demonstrated by the results of the trials, affirms the transformation achieved through increased innovation and implementation of newer treatment approaches against cancer.

Figure 1.2: Pharmacological engineering of CAR T-cell Therapy [17]

Case Studies and Experimental Results

Developments in cancer treatment rely on experimental results, primarily assisting in the identification of capabilities and limitations associated with specific strategies. Case studies and experimental results inform the implementation of different methods to ensure effective T-cell therapy against solid tumors. Henze's [17] focus is on using heparinase to facilitate T-cell infiltration. In this experiment, the study focuses on investigating the impact of heparanase in optimizing T-cell infiltration for the treatment of solid tumors, with results highlighting how the enzyme contributes to the degradation of ECM and allows enhanced penetration into pancreatic cancer tumors [17]. Fundamentally, understanding the results of Heparinase-expressing CAR T-cells in Pancreatic Cancer cases underscores the fact that improvement of T-cell penetration eliminates limitations associated with physical barriers in accessing solid tumors for cancer treatment [18]. In essence, the analysis of the experimental results in the case study supports the idea of enzyme generation to facilitate CAR T cell solid tumor infiltration.

Focusing on safety mechanisms, the Diaconu [19] case provides insights into using Caspase-9 to ensure the automatic termination of T cells, which allows for the risks of high toxicity and the likelihood of vital organ damage. The case highlights the engineering of the inducible caspase-9 suicide gene that can kill CAR T cells when activated, a fundamental component that allows the establishment of a safety

mechanism against toxicity associated with cancer treatment [20]. It is a critical component that facilitates solutions against challenges, including off-target effects and the potentially harmful effects of cancer treatment on patients. Further analysis of cases highlighting the effectiveness of strategies focuses on dual-targeting CAR T cells, such as glioblastoma, which provided evidence of a targeted approach to ensure improved specificity and increase the likelihood of treatment efficiency [21]. The case highlights the fundamental component of designing T cells to mitigate against the problem of antigen heterogeneity associated with solid tumors [21]. On the other hand, Metabolic reprogramming of CAR T cells provides solutions against exhaustion, especially considering that solid tumors thrive in hypoxic environments.

Challenges of CART –Cell Therapy in Solid Cancer

Tumor Microenvironment

The evaluation of treatment transformation against blood cancer achieved through the invention of CAR T cell therapy provides evidence of significant success. CAR T cell therapy against hematological malignancies reflects the growing impact of genetic engineering in healthcare and the imperative of sustained developments that would ensure continuous innovation. Despite the remarkable achievement in CAR T cell therapy against hematological malignancies, limitations exist when focusing on its use in the treatment of solid tumors, with Daei Sorkhabi [22] recognizing challenges such as tumor environment factors that undermine the efficiency of treatment. In this case, the challenges are looked at from the perspective of the tumor microenvironment and how it creates barriers against effective therapy. [9]. It is an observation Hong [21] highlights in terms of how tumors thrive in complex microenvironments surrounded by various cells, tissues, and growth factors. The limitations created by the tumor microenvironment against the effectiveness of CAR T cell therapy are contributed to by a range of elements, including how myeloid-derived suppressor cells and regulatory T-cells in the microenvironment of tumors release cytokines that prevent CAR T cell proliferation. Further analysis recognizes how the TME hypoxic environment undermines T-cell functionalities, while Daei Sorkhabi [22] acknowledges the fact that tumor-associated macrophages facilitate tumor growth.

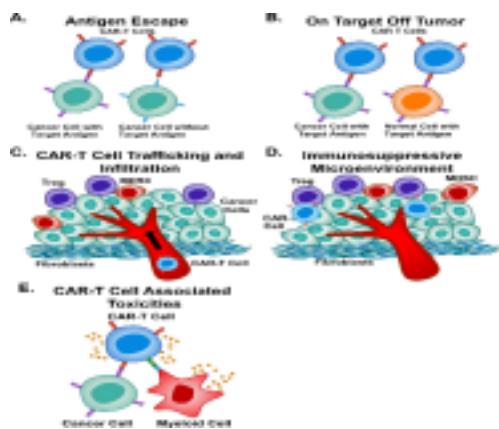
Antigen heterogeneity

Solid tumor development-associated challenges are diverse when considering the effectiveness of CAR T cell therapy, and that includes how heterogeneity of antigens linked to solid tumors provides variability and, in essence, complicates the action of the treatment. Antigen heterogeneity based on Hong's [20] comparative analysis focuses on the dynamic nature of antigen expression as opposed to how CD19 is uniformly expressed in blood cancers [9]. In this case, a fundamental point of consideration entails the fact that this variability allows the development of a diverse range of cancerous tumors, undermining the targeted infusion of CAR T cells. Uscanga-Palomeque [23] views the achievement of effectiveness in how CAR T cell therapy provides treatment against solid tumors and

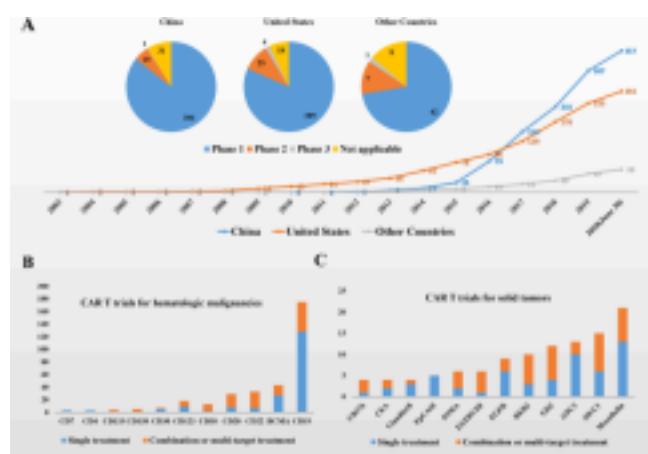
requires targeting multiple antigens, which offers significant complexities.

Physical barriers, toxicity, and off-target effects

Besides antigen heterogeneity and tumor microenvironment, other challenges associated with using CAR T cell therapy to treat solid tumors include physical barriers, toxicity, and off-target effects. They provide significant limitations against the effectiveness of the treatment in achieving remission of solid cancer, and based on Daei Sorkhabi's [22] assessment of physical barriers, the structural complexities and design of tissues where tumors grow undermine access, unlike hematological cancers, where cells are easily accessed through the bloodstream. Physical barriers also describe the poor organization and irregularities associated with tumor cells that facilitated the creation of hypoxic environments, which are critical in undermining T cell function [24]. On the other hand, the evaluation of the toxicity and off-target effects linked to solid tumor development provides strong evidence of existing limitations against the achievement of effective treatment of cancer using CAR T cell therapy. Rafiq et al. [25] analyze off-target effects and recognize how expressions of tumor cells mimic normal tissues, which implies that it remains challenging to establish targeted infusion of CAR T cell therapy. It leads to damage to other organs, and that can complicate treatment approaches. On the aspect of toxicity, a fundamental component of consideration entails that CAR T cells are linked to cytokine production and have adverse side effects, including organ failure and systemic inflammation.


Current strategies against the challenges of CAR T cell therapy in solid tumors

Understanding the growing burden of solid tumor cancers underlines the need to evaluate strategies to ensure the effectiveness of CAR T cell therapy. Innovation remains a critical component in achieving effective cancer treatment regimens, and that entails the implementation of measures that facilitate the development of solutions against barriers in the use of CAR T cell therapy in the treatment of solid tumor cancers, including improving T-cell infiltration as part of bypassing the physical barriers from the results of dense extracellular matrix [26]. Fundamentally, understanding the scope of increasing optimal T cell infiltration provides insights into how it leverages against barriers associated with abnormal tumor vasculature, and that can be achieved through approaches including matrix-degrading enzymes, chemokine engineering, and adjuvant therapies. According to Daei Sorkhabi [22], for instance, matrix-degrading enzymes, including heparanase, motivate CAR T cells' capabilities in penetrating ECM, allowing enhanced infiltration, while modification of the CAR T cells to portray chemokine receptors facilitates the transfer of T cells to solid tumor locations.


Understanding the diverse risks associated with CAR T cell therapy underlines the need to develop strategies for reducing the scope of harm. Toxicity and off-target effects remain significant barriers against the effectiveness of T cells in the treatment of solid tumor cancer, and based on current developments, solutions range from integration of suicide genes that trigger the killing of T cells in the event of severe risks of harm [27]. Inducible caspase-9 is an example of a suicide gene that has the

capabilities of a safety switch for eliminating toxicity [28]. Further analysis of safety mechanisms recognizes the use of switchable CARs and targeted delivery of T cells to tumor sites and cells, which is vital in minimizing damage to critical organs. Besides safety mechanisms, strategies such as modification of the tumor microenvironment involving checkpoint inhibition and cytokine engineering have also been adopted to ensure effectiveness in the use of T-cell therapy against solid tumors [29]. For instance, cytokine engineering facilitates the reprogramming of TME to support the operation of T cells, while checkpoint inhibition allows T cell activation [26]. Establishing strategies such as multi-targeting CARs minimizes the effects of antigen heterogeneity, which is critical in ensuring the effectiveness of T-cell therapy.

Figure 1.3: CAR T-cell therapy: Limitations and solutions [26]

Figure 1.4: CAR T-cell therapy: Hematological and solid tumor trials [26]

Effectiveness of the strategies: feasibility, scalability, and clinical applicability

Analyzing the strategies to address challenges experienced by CAR T cell therapy in the treatment of solid tumors highlights significant successes supported by experimental results, including how the engineering of heparanase improves T cell ability to infiltrate tumor cells. The use of heparanase in facilitating the process of T-cell infusion is feasible, as studies show a lack of adverse effects. Henze [17] acknowledges that heparanase engineering in optimizing T-cell infusion into solid tumors reflects significant steps in cancer treatment. However, it underscores the need to enhance research to ensure accurate validation and affirm its harmfulness in ECM degradation. Further analysis underlines the fact that scalability is achievable with a significant focus on control quality and enzyme expression consistency, while Hong [20] acknowledges the fact that it offers substantial evidence of clinical application. In this case, the applicability of heparanase engineering relies on creating a balance between enhanced metastasis and optimizing infiltration.

Providing effective treatment against solid tumors remains a critical component of improving global public health, and that involves ensuring the safety of treatment approaches for patients. Implementing different safety measures, including the use of iCasp9, has proven vital against the toxicity of T cell therapy, with findings indicating its contribution in minimizing risks of unintended effects. Daei Sorkhabi [22] acknowledges that the use of iCasp-9 provides feasibility, considering it eliminates incidences of toxicity scalability in terms of production, which can be achieved through standardization. Its clinical applicability is looked at from the perspective that it remains relevant in optimizing the treatment of solid tumors. Additional considerations focusing on modification of the tumor microenvironment (TME) show that using checkpoint inhibitors prevents the exhaustion of T cells due to hypoxia, and it provides feasibility with accurate selection of treatment approaches. Scalability is achieved by ensuring the availability of sufficient checkpoints, while Daei Sorkhabi's [22] views underscore the fact that it offers immense clinical benefits as it plays a crucial role in enhancing solid tumor treatment.

Limitations of current research and strategies

Although the current study focuses on implementing different strategies to support solid tumor treatment using CAR T cell therapy and provides evidence of significant achievement, limitations exist, including the fact that it needs to recognize the complexities involved in the genetic engineering of CAR T cells, Hong [20] underscore the fact that CAR T cell engineering requires advanced technologies for targeting and programming and that implies production can be limited besides considerations that highlight the high likelihood of inconsistencies in manufacturing. In essence, the highly complex and distributed nature of CAR T cell genetic engineering can introduce variabilities in efficacy and increase the risks of harm to patients. However, Hong's [20] assessment supporting the engineering of CAR T cells highlights how

technology can play a central role in enhancing precision and reducing incidences of variable inefficiency, focusing on how Cas9 contributes towards ensuring production consistencies [30]- [31]. Another critical aspect associated with technology entails the cost implications of implementing technologies for CAR T cell therapy [22]. This particularly emerges from therapy development needing specificity, focusing on individual patients' solid tumor demands. However, arguments have emerged proposing the need to leverage technology to ensure enhanced scalability and reduce costs, including using donor-obtained cells.

The challenges linked to implementing CAR T cell therapy in treating solid tumors are diverse. Hong et al. (2024) examine how biology-related limitations, including T-cell exhaustion and persistence, can undermine efficiency. In this case, exhaustion creates barriers against targeting solid tumor cells and associated results. Although the study points out how reprogramming facilitates solutions against exhaustion, the long-term health implications of combining different variables in the treatment of solid cancer remain unclear (Gargett & Brown, 2014). Antigen heterogeneity and tumor escape also form some of the elements that provide limitations towards the achievement of efficacy against the treatment of solid tumors, with findings suggesting possibilities of off-targeting and damage to vital organs. Further limitations emerging in the current study underscore the fact that CAR T cell therapy raises significant ethical concerns, ranging from how high costs limit equitable access to when there is a high likelihood of unintended outcomes [22]. Fundamentally, it is imperative to understand that increased adoption of CAR T cell therapy from the perspective of benefits and drawbacks requires careful consideration of associated costs, ethical implications, and whether or not it provides life-threatening risks to patients.

CONCLUSION

The study recognized the critical role of innovation in medicine in creating solutions against the increased incidence and prevalence rates of solid cancer. It acknowledges the transformation achieved in cancer treatment using CAR T cell therapy, especially against hematological cancer, while recognizing the need to improve the framework implicit in ensuring efficacy regarding how T cell therapy contributes to effectiveness in treating solid tumors. One of the fundamental highlights of the research focuses on the challenges against CAR T cell therapy in achieving effective results against solid tumors, including antigen heterogeneity, toxicity, off-targeting, TME, and physical barriers. It affirms the importance of leveraging technology to ensure optimal use of CART T therapy against solid cancer, highlighting strategies ranging from promoting the safety mechanisms to TME modification and improving T-cell infiltration. Fundamentally, technological advancement remains a crucial component of enhanced outcomes in terms of CAR T cell utilization in solid cancer, with findings indicating its vital role in achieving scalability and cost reduction.

ACKNOWLEDGEMENT

December 2025

Vol 2. No 1.

Oxford Journal of Student Scholarship
www.oxfordjss.org

I want to express my sincere appreciation to my mentor, Dr. Kisha Patel from the University of Pennsylvania. Also, I express my heartfelt thanks to Lumiere Education for their guidance and support in developing this paper.

REFERENCES

- [1] Siegel, Rebecca L., et al. "Cancer statistics, 2023." *CA: a cancer journal for clinicians* 73.1 (2023).
- [2] Rahib, Lola, et al. "Estimated projection of the US cancer incidence and death to 2040." *JAMA Network Open* 4.4 (2021): e214708-e214708.
- [3] Gu, Runxia, et al. "Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia." *Journal of Hematology & Oncology* 13 (2020): 1-13.
- [4] Dourthe, Marie Emilie, and André Baruchel. "CAR T-cells in acute lymphoblastic leukemia: Current results." *Bulletin du Cancer* 108.10 (2021): S40-S54.
- [5] Lu, Wenyi, et al. "CD19 CAR-T cell treatment conferred sustained remission in B-ALL patients with minimal residual disease." *Cancer Immunology, Immunotherapy* 70 (2021): 3501-3511.
- [6] Xu, Xinjie, et al. "Challenges and clinical strategies of CAR T-cell therapy for acute lymphoblastic leukemia: overview and developments." *Frontiers in immunology* 11 (2021): 569117.
- [7] Daei Sorkhabi, Amin, et al. "The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies." *Frontiers in immunology* 14 (2023): 1113882.
- [8] Martino, Massimo, et al. "A review of clinical outcomes of CAR T-cell therapies for B-acute lymphoblastic leukemia." *International Journal of Molecular Sciences* 22.4 (2021): 2150.
- [9] Sterner, Robert C., and Rosalie M. Sterner. "CAR-T cell therapy: current limitations and potential strategies." *Blood Cancer Journal* 11.4 (2021): 69.
- [10] Haslauer, Theresa, et al. "CAR T-cell therapy in hematological malignancies." *International Journal of Molecular Sciences* 22.16 (2021): 8996.
- [11] Al-Haideri, Maysoon, et al. "CAR-T cell combination therapy: the next revolution in cancer treatment." *Cancer Cell International* 22.1 (2022): 365.
- [12] Bui, Thuy Anh, et al. "Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment." *EBioMedicine* 106 (2024).
- [13] Globerson Levin, Anat, et al. "CAR T cells: Building on the CD19 paradigm." *European journal of immunology* 51.9 (2021): 2151-2163.
- [14] Dana, Hassan, et al. "CAR-T cells: Early successes in blood cancer and challenges in solid tumors." *Acta Pharmaceutica Sinica B* 11.5 (2021): 1129-1147.
- [15] Maude, Shannon L., et al. "Tisagenlecleucel in children and young adults with B-cell

lymphoblastic leukemia." *New England Journal of Medicine* 378.5 (2018): 439-448.

[16] Neelapu, Sattva S., et al. "Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma." *New England Journal of Medicine* 377.26 (2017): 2531-2544.

[17] Iacoboni, Gloria, et al. "Real-world evidence of tisagenlecleucel for the treatment of relapsed or refractory large B-cell lymphoma." *Cancer Medicine* 10.10 (2021): 3214-3223.

[18] Henze, Janina, et al. "Enhancing the efficacy of CAR T cells in the tumor microenvironment of pancreatic cancer." *Cancers* 12.6 (2020): 1389.

[19] Caruana, Ignazio, et al. "Heparanase promotes tumor infiltration and antitumor activity of CAR redirected T lymphocytes." *Nature Medicine* 21.5 (2015): 524-529.

[20] Diaconu, Iulia, et al. "Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells." *Molecular Therapy* 25.3 (2017): 580-592.

[21] Ercilla-Rodríguez, Paula, et al. "CAR-T lymphocyte-based cell therapies; mechanistic substantiation, applications and biosafety enhancement with suicide genes: new opportunities to melt side effects." *Frontiers in Immunology* 15 (2024): 1333150.

[22] Hong, Mihe, Justin D. Clubb, and Yvonne Y. Chen. "Engineering CAR-T cells for next-generation cancer therapy." *Cancer cell* 38.4 (2020): 473-488.

[23] Daei Sorkhabi, Amin, et al. "The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies." *Frontiers in immunology* 14 (2023): 1113882.

[24] Uscanga-Palomeque, Ashanti Concepción, et al. "CAR-T cell therapy: from the shop to Cancer therapy." *International Journal of Molecular Sciences* 24.21 (2023): 15688.

[25] Guan, Zhiyuan, et al. "Blood–Brain barrier, cell junctions, and tumor microenvironment in brain metastases, the biological prospects and dilemma in therapies." *Frontiers in Cell and Developmental Biology* 9 (2021): 722917.

[26] Rafiq, Sarwish, Christopher S. Hackett, and Renier J. Brentjens. "Engineering strategies to overcome the current roadblocks in CAR T cell therapy." *Nature reviews Clinical oncology* 17.3 (2020): 147-167.

[27] Gao, Shan, et al. "Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy." *Theranostics* 9.1 (2019): 126.

[28] Flugel, Christian L., et al. "Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours." *Nature Reviews Clinical Oncology* 20.1 (2023): 49-62.

[29] Gargett, Tessa, and Michael P. Brown. "The inducible caspase-9 suicide gene system as a "safety switch" to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells." *Frontiers in Pharmacology* 5 (2014): 235.

[30] Liu, Guangna, et al. "Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment." *Cellular & Molecular Immunology* 18.5 (2021): 1085-1095.

[31] Zhang, Zheng-Zheng, et al. "Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies." *Pharmacological research* 175 (2022): 106036.