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ABSTRACT 

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the 
selective loss of motor neurons, leading to paralysis and eventual death. TAR DNA-binding protein 43 
(TDP-43) has emerged as a central pathological hallmark in both sporadic and familial ALS cases. 
Current research suggests that abnormal TDP-43 localization disrupts critical RNA-binding functions, 
leading to both a loss of nuclear RNA-binding function and a gain of toxic cytoplasmic aggregation, 
driving ALS’s progressive neurodegeneration, synaptic dysfunction, and neuronal death  This narrative 
review evaluates the molecular mechanisms by which TDP-43 contributes to neurodegeneration, 
emphasizing RNA dysregulation, protein aggregation, and gene interactions such as those involving 
Ataxin-2. Furthermore, TDP-43 dysfunction disrupts RNA splicing, transport, and translation, 
emphasizing its downstream effects on genes such as STMN2 and UNC13A, which are crucial for axonal 
integrity and synaptic transmission. By synthesizing recent findings, this review highlights promising 
therapeutic directions, including antisense oligonucleotides targeting Ataxin-2, small molecules inhibiting 
TDP-43 aggregation, and CRISPR-based gene-editing strategies designed to restore homeostatic RNA 
regulation, offering a path toward disease-targeting interventions for ALS TDP-43 pathology. Despite 
these advances, translation from preclinical to clinical efficacy remains limited, reflecting the need for 
integrative therapeutic approaches that address the multifactorial nature of ALS pathology. Collectively, 
this review underscores TDP-43’s pivotal role in disease progression and identifies molecular pathways 
that may inform the next generation of targeted therapies. 
 
 
INTRODUCTION 

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that primarily affects the function of 
motor neurons of the brain and the spinal cord, weakening muscles of the upper and lower body, and 
escalating to paralysis and eventual death as a result of respiratory muscle failure. In the United States, the 
incidence of ALS between 2014 and 2016 was estimated at 1.6 to 1.8 cases per 100,000 individuals, with 
higher rates observed among white populations, males, and individuals between 60 and 79 years of age 
(Mehta et al., 2022). 
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ALS is characterized by both motor and non-motor neurodegenerative symptoms, with a median survival 
of approximately 34.7 months from the onset of symptoms (Kiernan et al., 2011).  Motor symptoms 
include muscle weakness and atrophy, typically beginning in the legs and arms, and progressing to 
apparent thinner limbs due to loss of muscle mass. Patients frequently exhibit fasciculations and increased 
muscle stiffness, which contribute to impaired mobility. Additional motor symptoms involve dysarthria 
(difficulty speaking) and dysphagia (difficulty swallowing). As the disease advances, respiratory muscles 
including the diaphragm become compromised, leading to dyspnea and respiratory failure, a leading cause 
of death in ALS patients. Non-motor symptoms involve cognitive and behavioral impairments, as well as 
sleep disorders such as insomnia, obstructive sleep apnea, and nocturnal hypoventilation. While less 
prevalent, others have also reported experiencing autonomic dysfunction, including orthostatic 
hypotension and fluctuation in blood pressure (Kiernan et al., 2011).  

ALS is classified into two types: familial and sporadic. Through the evaluation of family history, it is 
determined whether an individual may have sporadic ALS (sALS) or familial ALS (fALS). sALS, the 
predominant form of ALS, refers to cases without a family history and accounts for approximately 90% of 
all ALS cases. The exact cause of sporadic ALS has yet to be identified. However, several biological 
processes have been linked to it, including pathological mechanisms such as protein misfolding and 
aggregation, as well as environmental and genetic factors, including autoimmune components, and 
disruptions in molecular and cellular pathways (Ajroud-Driss & Siddique, 2015). fALS accounts for 
5-10% of all ALS cases and is caused by inherited genetic mutations passed down through families. 
Unlike sALS, fALS is linked to genetic predisposition which elevates their risk of developing the disease. 
These mutations often follow an autosomal dominant pattern, where inheriting a single copy of the 
mutated gene is enough to increase the likelihood of developing ALS.  (Ajroud-Driss & Siddique, 2015). 

The neurodegeneration observed in ALS results from a complex interplay of genetic, molecular, and 
cellular mechanisms. These include regulated forms of cell death such as apoptosis and necroptosis, 
mitochondrial dysfunction leading to oxidative stress, glutamate excitotoxicity, and disruptions in protein 
homeostasis (Suk & Rousseaux, 2020). A hallmark of ALS is the accumulation of misfolded proteins. 
These aggregates disrupt essential cellular functions and contribute significantly to disease progression. 
One of the key proteins implicated in the pathology of ALS is TAR DNA-binding protein 43 (TDP-43), 
whose abnormal localization and aggregation are increasingly associated with impaired RNA processing 
in ALS pathology along with other proteins such as superoxide dismutase 1 (SOD1) (Suk & Rousseaux, 
2020). Although this review centers on TDP-43, other major ALS-associated genes, including C9orf72, 
SOD1, and FUS, contribute substantially to disease heterogeneity. Notably, C9orf72 repeat expansions 
can likewise lead to TDP-43 pathology, whereas SOD1 and many FUS cases lack TDP-43 aggregates 
entirely, underscoring that TDP-43 represents a dominant but not universal disease mechanism. However, 
TDP-43 remains the most broadly relevant pathological feature, making it a useful anchor for 
understanding RNA-related mechanisms that span multiple forms of ALS. 
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TDP-43 has emerged as a central pathogenic factor in both sporadic and familial ALS, with recent studies 
emphasizing its role in RNA processing and regulation. TDP-43 is an RNA/DNA binding protein that has 
a critical role in various cellular processes, especially in RNA metabolism. It plays a central role in RNA 
processing, including regulating alternative splicing, maintaining mRNA stability, and supporting 
microRNA production. Additionally, TDP-43 binds to RNA and ensures accurate pre-mRNA splicing, 
particularly by preventing the inclusion of cryptic exons, short segments normally found within introns, 
the non-coding regions of a gene (Butti & Patten, 2019). Occasionally, they are mistakenly included in the 
final mRNA during the splicing process. This can disrupt the proper reading of the mRNA, leading either 
to the production of faulty proteins or to the degradation of the mRNA through a process known as 
nonsense-mediated decay (NMD). In ALS, TDP-43 is abnormally relocated from the nucleus to the 
cytoplasm, where it forms insoluble aggregates. This mislocalization impairs its normal nuclear roles, 
including RNA splicing and mRNA regulation, resulting in widespread disruptions in RNA processing 
and contributing to ALS pathogenesis (Butti & Patten, 2019).  

Importantly, these molecular abnormalities do not necessarily arise at the same point in disease 
progression. TDP-43 mislocalization, cryptic exon inclusion, and STMN2 reduction may emerge at 
different stages, suggesting that early functional defects and later structural degeneration reflect distinct 
temporal phases of ALS pathology. 

This narrative review aims to explore the role of TDP-43 dysfunction in disrupting RNA regulatory 
mechanisms that contribute to ALS pathogenesis. It will examine the specific genes and molecular 
pathways affected by TDP-43 mislocalization and aggregation, and discuss current and emerging 
therapeutic strategies targeting these RNA-related abnormalities. This review synthesizes peer-reviewed 
studies published between roughly 2010 and 2024, prioritizing data from human post-mortem tissue, 
iPSC-derived motor neurons, and pre-clinical ALS models. Because RNA dysregulation has emerged as a 
central theme in ALS research, this review intentionally focuses on TDP-43–dependent RNA processing 
rather than broader clinical or environmental factors. 

 

TDP-43 FUNCTION AND PATHOLOGY 

TDP-43 in Normal Physiology  

TDP-43 is vital for controlling gene expression and RNA processing in healthy cells. As a multifunctional 
protein that binds both RNA and DNA, it participates in many RNA-related processes, including 
transcription, splicing, transport, and translation. This ability to interact with nucleic acids enables 
TDP-43 to regulate key gene expression pathways and maintain cellular balance. Proper TDP-43 function 
is crucial for normal cell activity, and when its regulation is disrupted, it is strongly associated with 
neurodegenerative diseases such as ALS, Frontotemporal Lobar Degeneration (FLTD) and Alzheimer's 
Disease (AD)  (Hou et al., 2024). The sections that follow will explore the specific roles TDP-43 plays in 
gene expression and RNA metabolism. 
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TDP-43 in Gene Expression Regulation and RNA Processing 

TDP-43 plays a critical role in regulating gene expression by modulating the interplay between R-loops 
and 5-hydroxymethylcytosine (5hmC) within gene bodies and at enhancer-promoter regions, a 
mechanism essential for maintaining genomic stability and transcriptional homeostasis (Hou et al., 2024). 
Additionally, TDP-43 engages in a negative feedback mechanism by binding to its own 3' untranslated 
region (UTR), promoting mRNA instability and degradation to prevent its overexpression (Imaizumi et 
al., 2022). TDP-43 also plays a key role in pre-mRNA splicing by modulating the inclusion or exclusion 
of specific exons, the coding segments of a gene that are joined together to form the final mRNA. (Buratti 
& Baralle, 2010). TDP-43 oversees RNA splicing and polyadenylation, the addition of a poly(A) tail, a 
stretch of adenine nucleotides, to the 3′ end of an mRNA molecule, which protects it from degradation 
and aids in nuclear export and translation. Both are vital for proper mRNA maturation and stability. 
Mutations in TDP-43 have been shown to cause missplicing and abnormal polyadenylation, contributing 
to the pathology of neurodegenerative disorders (Imaizumi et al., 2022). Additionally, TDP-43 is involved 
in microRNA biogenesis, influencing the production and regulation of microRNAs that affect gene 
expression post-transcriptionally (Buratti & Baralle, 2010). 

Role of TDP-43 in RNA Transport and Translation  

Beyond RNA processing, TDP-43 plays a significant role in directing the transport of messenger RNA 
molecules to specific subcellular locations, a process fundamental for localized protein synthesis required 
for normal cellular functions (Bjork et al., 2022). This mechanism is particularly critical in neurons, 
where the spatial regulation of protein production, the localized synthesis of proteins at specific sites 
within the cell, occurs at synapses. This localized control underlies key processes such as synaptic 
plasticity, the activity-dependent strengthening or weakening of connections important for learning and 
memory, and neural adaptability, the nervous system’s ability to adjust in response to experience or 
change (Bjork et al., 2022). Moreover, TDP-43 participates in the regulation of protein translation by 
interacting with ribonucleoprotein complexes, this results in the translation efficiency of select mRNA 
targets, which is vital for maintaining protein homeostasis and overall cellular function (Morato et al., 
2023). At the molecular level, TDP-43 undergoes liquid-liquid phase separation by interacting with RNA, 
forming ribonucleoprotein condensates that help regulate gene expression. These condensates have 
liquid-like properties crucial for normal cell function. When this process is disrupted, it can lead to the 
formation of harmful protein aggregates, a hallmark of neurodegenerative diseases (Grese et al., 2021). 
Although essential for gene regulation and RNA processing, TDP-43 malfunction is strongly linked to 
disorders like ALS and FTLD (Grese et al., 2021). Mutations often cause TDP-43 to mislocalize from the 
nucleus to the cytoplasm, where it aggregates and loses its normal function, driving disease progression. 
Therefore, understanding how TDP-43 is normally regulated in cells is crucial for developing effective 
therapies for these diseases. 
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TDP-43-MEDIATED RNA DYSREGULATION IN ALS 

TDP-43-mediated RNA dysregulation plays a critical role in the progression of ALS by interfering with 
the cellular processes that regulate RNA stability, localization, and translation. TDP-43 is a DNA and 
RNA-binding protein present in almost all ALS cases, where mutations or mislocalization from the 
nucleus to the cytoplasm lead to widespread disturbances in RNA metabolism. Because RNA metabolism 
includes processes such as RNA splicing (cutting and rearranging RNA) and microRNA biogenesis 
(producing small RNAs that regulate gene expression), its disruption can impair neuron survival and 
function. The sections below outline the key mechanisms through which TDP-43-mediated RNA 
dysregulation contributes to ALS pathology. 

MicroRNA Biogenesis and Cytotoxicity 

As illustrated in Figure 1, TDP-43 mislocalization in ALS shifts its role from a nuclear RNA processing 
regulator to a source of toxic cytoplasmic interactions, leading to both loss of normal nuclear functions 
and impaired axonal messenger RNA (mRNA) transport. Mutations in TDP-43, including A315T and 
M337V, interfere with Dicer, an enzyme essential for converting precursor molecules into mature 
microRNAs (miRNA). miRNAs are short RNA molecules that help fine-tune protein production by 
targeting specific mRNAs for degradation or translation inhibition. Findings from Drosophila models, in 
vitro biochemical assays, and iPSC-derived motor neurons indicate that these mutations may alter Dicer’s 
localization or reduce its activity, and in these model systems, changes in Dicer function have been 
associated with shifts in miRNA profiles that may contribute to cytotoxic stress (Long et al., 2024). 
Because direct evidence from human ALS tissue remains limited, these effects should be interpreted as 
model-supported observations rather than confirmed causal mechanisms. Studies using iPSC-derived 
motor neurons and rodent models have shown that certain TDP-43 mutations, such as M337V, may lead 
to altered transposable element (TE) regulation, rather than fully disrupting it. In these controlled 
experimental systems, mutant TDP-43 appears to weaken normal TE repression, which has been 
associated with changes in nearby gene expression connected to extracellular-matrix organization and 
RNA metabolism (Valdebenito-Maturana et al., 2022). While these findings suggest a potential role for 
TE activity in contributing to neuronal vulnerability, evidence in human ALS tissue remains limited, and 
TE dysregulation should be interpreted as a model-supported mechanism rather than a confirmed causal 
process in patients.  

In the case of the M337V mutation, TDP-43 forms aggregates that physically reorganize Dicer but do not 
completely block its activity, which suggests that different mutations may influence ALS pathology 
through mutation-specific mechanisms observed in experimental models (Long et al., 2024). While 
normally regulated, TEs can influence nearby gene expression, sometimes activating genes that should 
remain silent or silencing genes that are needed for normal function. Motor neurons may be particularly 
vulnerable to TDP-43 dysfunction because they rely heavily on long-distance axonal transport, localized 
mRNA translation, and high metabolic output. These demands create a low tolerance for RNA-processing 
errors, making even subtle disruptions in TDP-43 function disproportionately harmful in these cells. In 
motor neurons, altered TE activity affects genes involved in maintaining the extracellular matrix, the 
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supportive network surrounding cells, and RNA processing, both of which are vital for neuron health 
(Valdebenito-Maturana et al., 2022). Together, these findings suggest that TE changes could increase 
neuronal vulnerability, although most of the current data come from experimental models. 

RNA Splicing and Polyadenylation 

TDP-43 mutations also cause widespread splicing defects, including exon skipping, leaving out necessary 
coding segments, and cryptic exon inclusion, accidentally adding non-coding RNA into the transcript. 
These splicing errors can change the resulting protein’s structure or stop its production entirely, which is 
linked to neurodegeneration in ALS models (Arnold et al., 2024). Additionally, TDP-43 loss from the 
nucleus alters polyadenylation site selection, the choice of where to add the protective poly(A) tail on 
mRNA. This change can destabilize transcripts or alter protein expression, as seen with MARK3, a gene 
whose increased expression promotes tau protein phosphorylation, a feature observed in ALS pathology 
(Arnold et al., 2024). 

Stress Granules and Aggregates 

Under cellular stress, TDP-43 can form stress granules, which are temporary RNA-protein complexes that 
store mRNAs until stress subsides. However, in ALS, these granules can persist and transition into 
insoluble aggregates that trap RNA and prevent its translation into proteins (Coyne et al., 2017). This 
aggregation not only removes TDP-43 from the nucleus, where it’s needed, but also sequesters essential 
mRNAs, disrupting protein production. Therapeutically, disrupting TDP-43’s harmful interactions within 
stress granules, abnormal associations with RNA and other RNA-binding proteins that impair mRNA 
metabolism, translation, and stress response pathways,  has shown promise, with small molecules 
reducing motor neuron toxicity in experimental ALS models (François-Moutal et al., 2019). 
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Figure 1. TDP-43 in healthy versus ALS-affected motor neurons (adapted from Babazadeh et al., 2023), 
In healthy motor neurons (left), TDP-43 is localized primarily in the nucleus, supporting normal RNA 
processing and assembly of neuronal transport granules, which shuttle mRNA and associated proteins 
along axons to support local translation at synaptic sites. In ALS-affected motor neurons (right), nuclear 
depletion of TDP-43 results in loss of its normal RNA processing functions, while cytoplasmic 
mislocalization promotes gain of toxic interactions within stress granules. These changes lead to impaired 
RNA granule transport, reduced axonal transport function, and ultimately degeneration of motor neuron 
networks. 

Neuromuscular Junction (NMJ) Disruption 

TDP-43 dysfunction also impacts the neuromuscular junction, the communication point between motor 
neurons and muscles. Mutations lead to morphological changes and impaired signal transmission at the 
NMJ, ultimately causing denervation, loss of nerve supply, and progressive motor impairment (Lépine et 
al., 2022). Because NMJ integrity is essential for movement, this link ties TDP-43 pathology directly to 
ALS’s defining motor symptoms. 

While TDP-43-mediated RNA dysregulation is a central driver of ALS pathology, it acts within a broader 
network of disease processes. Environmental toxins, additional genetic mutations (such as those in 
SOD1), and other cellular stressors can enhance TDP-43 dysfunction, leading to the multifaceted and 
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variable disease course seen in ALS patients (Mitra & Hegde, 2020). Understanding these interactions 
will be crucial for designing therapies that target multiple aspects of ALS simultaneously. 

 

ROLE OF STMN2 IN NEURONAL FUNCTION 

Stathmin-2 (STMN2) has been a key target in understanding and potentially treating ALS. Its expression 
is tightly regulated by TDP-43 and is essential for motor neuron maintenance, axonal outgrowth, and 
regeneration. In ALS, the mislocalization and loss of nuclear TDP-43 function leads to aberrant splicing 
of STMN2 mRNA, generating a truncated transcript, a shortened version lacking essential coding regions, 
that cannot produce functional protein, ultimately reducing STMN2 levels (Klim et al., 2019; Ritsma et 
al., 2023). This reduction has been consistently observed in ALS patients and is strongly associated with 
disease progression. STMN2 loss exacerbates motor neuron degeneration by impairing axonal stability 
and regeneration, which in turn contributes to NMJ denervation and motor deficits. Notably, mouse 
models with STMN2 depletion exhibit motor neuropathy without obvious motor neuron death, 
highlighting that early dysfunction can occur independently of cell loss (Krus et al., 2022). Clinically, 
STMN2 expression levels correlate with ALS disease duration, and increased levels of truncated STMN2 
transcripts are consistently detected in ALS cases compared to healthy controls (Mehta et al., 2023). 
STMN2 loss leads to neurofilament-dependent axonal collapse, contributing to both motor and sensory 
deprivation, key hallmarks of ALS pathology (López-Erauskin et al., 2022). This makes the interaction 
between TDP-43 dysfunction and STMN2 loss a critical axis in ALS progression. 

Beyond axonal maintenance, STMN2 appears to play a crucial role in preserving mitochondrial structure 
and function. Mice lacking STMN2 show abnormal mitochondrial morphology and progressive motor 
decline, suggesting that mitochondrial impairment may be a downstream consequence of STMN2 
deficiency (Krus et al., 2024). Although initial studies proposed that certain dinucleotide repeat 
expansions in the STMN2 gene might increase ALS risk, these findings have not been consistently 
replicated, and some longer CA repeats are even found in unaffected individuals (Ross et al., 2022). Thus, 
while genetic variability in STMN2 appears unlikely to drive disease susceptibility, reduced expression of 
the functional protein remains a promising biomarker and therapeutic target. 

 

UNC13A: LINKING TDP-43 DYSFUNCTION TO SYNAPTIC FAILURE IN ALS 

UNC13A has emerged as a key mediator of TDP-43-dependent RNA splicing dysfunction in ALS with 
evidence coming from human post-mortem motor cortex samples, iPSC-derived motor neurons, and 
rodent models where TDP-43 depletion is experimentally induced. Under normal conditions, TDP-43 
plays a protective role by suppressing the inclusion of a cryptic exon within the UNC13A gene during 
RNA splicing, a critical step in converting pre-mRNA into mature transcripts (Brown et al., 2022; Ma et 
al., 2022). When TDP-43 is mislocalized from the nucleus, an effect documented in human ALS tissue 
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and reproduced in both iPSC-derived neurons and TDP-43 knockdown mouse models, this cryptic exon 
becomes more likely to be included in UNC13A mRNA. Since this exon contains premature stop codons, 
its inclusion results in nonsense-mediated decay, a quality control mechanism that degrades faulty mRNA. 
The consequence is a significant reduction in UNC13A protein levels, and has been associated with 
synaptic impairments across these model systems (Brown et al., 2022; Keuss et al., 2024). 

Importantly, common genetic variants in UNC13A, particularly the ALS-associated SNP rs12608932, 
increase the likelihood of cryptic exon inclusion when TDP-43 function is reduced. These risk variants lie 
within or near the cryptic exon and appear to weaken the ability of TDP-43 to bind the RNA, effectively 
sensitizing it to splicing errors in model systems and human genetic data (Brown et al., 2022). Other 
RNA-binding proteins, like hnRNP L, hnRNP A1, and hnRNP A2B1, also influence cryptic exon 
inclusion, but TDP-43 remains the primary regulator (Koike, 2024). Together, these findings position 
UNC13A as a genetically and functionally vulnerable target within TDP-43–driven pathology, although 
the precise contributions across different ALS subtypes continue to be investigated. 

Functionally, UNC13A is essential for synaptic vesicle priming, the process that prepares 
neurotransmitters for release at the presynaptic terminal (Willemse et al., 2023). Loss of UNC13A, due to 
cryptic exon inclusion, causes widespread deficits in neurotransmission, which are evident as abnormal 
synaptic firing and reduced synaptic strength (Keuss et al., 2024; Willemse et al., 2023).  Figure 2 
demonstrates how the absence of functional nuclear TDP-43 permits cryptic exons to be incorporated into 
UNC13A mRNA. This aberrant splicing produces defective transcripts that are rapidly degraded, 
ultimately diminishing UNC13A protein levels and contributing to neuronal dysfunction (Lipstein et al., 
2022). These changes are especially damaging at NMJs, where transmission breakdown leads to motor 
neuron denervation, one of the earliest and most consequential events in ALS (Brown et al., 2022; 
Willemse et al., 2023). Moreover, UNC13A dysfunction disrupts both excitatory signaling, nerve cell 
communication that increases the likelihood of the receiving neuron firing an electrical impulse, and 
inhibitory signaling, communication that decreases that likelihood, within central circuits, the 
interconnected networks of neurons in the brain and spinal cord that process and transmit information. 
This imbalance further destabilizes motor and cognitive networks (Willemse et al., 2023). 

Clinically, the impact of UNC13A dysfunction is reflected in patient outcomes. Individuals carrying two 
copies of the high-risk C allele (rs12608932 C/C genotype) experience a more severe disease course, 
characterized by bulbar-onset symptoms, increased cognitive impairment, and shorter survival (Manini et 
al., 2023; Tan et al., 2020; Willemse et al., 2023). These patients also show more upper motor neuron 
involvement and reduced lung function at diagnosis (Manini et al., 2023). Neuroimaging studies link this 
genotype to brain hypometabolism in regions critical for motor and cognitive processing, including the 
frontal and precentral cortices (Calvo et al., 2022). In line with this, cognitive assessments reveal poorer 
performance in tasks involving executive function and social cognition among C/C carriers (Calvo et al., 
2022; Tan et al., 2020). The mechanism appears to be direct: reduced UNC13A impairs synaptic signaling 
and neuromuscular communication, leading to denervation, atrophy, and progressive motor decline 
(Lépine et al., 2022). 
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Figure 2. TDP-43 regulation of UNC13A transcript processing in healthy versus ALS-affected neurons 
(adapted from Lipstein, 2022). In healthy neurons (A), nuclear TDP-43 binds pre-mRNA to suppress 
cryptic exon inclusion, enabling correct splicing and production of mature UNC13A transcripts, which are 
translated into functional protein. In ALS (B), abnormal TDP-43 aggregation and nuclear depletion lead 
to inclusion of cryptic exons in UNC13A mRNA, producing erroneous transcripts that are recognized and 
degraded by quality-control pathways. The loss of functional UNC13A protein contributes to synaptic 
dysfunction and neurodegeneration. 

The connection between TDP-43 pathology and UNC13A cryptic splicing represents one of the clearest 
mechanistic links in ALS, direct cause-and-effect relationships at the molecular or cellular level that 
explain how specific changes drive the disease process. Antisense oligonucleotides (ASOs) targeting the 
cryptic exon successfully restore UNC13A protein levels and normalize synaptic transmission in disease 
models, demonstrating a causative role for the splicing defect and offering a compelling therapeutic 
strategy (Keuss et al., 2024). This also underscores a broader convergence in ALS pathology: multiple 
ALS-associated RNA-binding proteins, including MATR3, FUS, and hnRNPA1, have been shown to 
affect UNC13A regulation, highlighting its centrality in maintaining synaptic integrity (Watanabe et al., 
2024). Together, these findings suggest that UNC13A misregulation is not only a consequence of TDP-43 
dysfunction but also a common downstream effector of broader RNA-binding protein dysregulation in 
ALS. 
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THERAPIES TARGETING TDP-43 INDUCED ALS PATHOLOGY: CRISPR & ASOS 

Clustered Regularly Interspaced Short Palindromic Repeats, or, CRISPR is a groundbreaking gene-editing 
technology derived from an adaptive immune system found in bacteria. This system uses 
CRISPR-associated (Cas) proteins to identify and cut foreign DNA, such as viral genomes, protecting 
bacteria from infection. In biomedical research, this mechanism has been adapted to serve as a molecular 
tool, allowing scientists to target and modify specific genes with precision and efficiency (Derry, 2021; 
Wollert, 2020). Recent advances in CRISPR technology have opened new avenues for therapeutic 
intervention in ALS, particularly in regulating pathological TDP-43 activity. Unlike traditional CRISPR 
systems that target DNA, newer RNA-targeting CRISPR effectors, such as Cas13 and Cas7-11, have 
shown the potential to directly bind and degrade disease-associated RNA transcripts without altering the 
genome. These tools offer a more flexible and reversible approach to gene regulation, making them 
especially suitable for neurodegenerative conditions like ALS. 

Targeting Ataxin-2 to Modulate TDP-43 Pathology 

A key strategy involves targeting Ataxin-2. Ataxin-2 is a protein encoded by the ATXN2 gene in humans, 
playing a key role in various neurodegenerative disorders, particularly spinocerebellar ataxia type 2 
(SCA2) (Scoles & Pulst, 2018). At the cellular level, ataxin-2 affectsRNA maturation, the process of 
modifying precursor RNA molecules into their final functional forms, and translation, the synthesis of 
proteins from messenger RNA, both of which are essential for maintaining proper cell function (Becherel 
et al., 2015; Magaña et al., 2013). This RNA-binding protein is known to modulate TDP-43 toxicity. 
Elevated Ataxin-2 expression enhances the formation of stress granules, temporary RNA-protein 
aggregates formed under cellular stress, and facilitates the abnormal aggregation of TDP-43, contributing 
to neuronal dysfunction. By directing CRISPR-Cas13 systems to suppress Ataxin-2 mRNA, researchers 
have demonstrated reduced TDP-43 mislocalization, diminished stress granule formation, and decreased 
neurotoxicity in cellular and animal models of ALS (Zeballos et al., 2023). 

Mechanism and Therapeutic Benefits 

Cas13 proteins are guided by custom-designed RNA sequences to bind and cleave specific target RNAs, 
in this case, Ataxin-2 transcripts. This selective degradation has been shown in cellular and animal models 
to prevent downstream effects that normally exacerbate TDP-43 pathology. In vivo studies in mouse 
models have shown that CRISPR-mediated Ataxin-2 suppression can lead to improved motor function, 
reduced TDP-43 aggregates, and extended survival (Zeballos et al., 2023). Furthermore, newer 
high-fidelity versions of Cas13 minimize off-target activity, enhancing both safety and therapeutic 
potential. This level of precision is essential, as TDP-43 is involved in tightly regulated feedback loops 
that control its own expression. Disrupting this autoregulation can inadvertently worsen pathology by 
increasing levels of toxic TDP-43 isoforms (Dykstra et al., 2024). 

While these findings are preclinical, they underscore the potential of RNA-targeted CRISPR therapy to 
modulate key drivers of ALS progression. Most evidence to date comes from rodent studies and cultured 
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neuronal systems, and the degree to which these results translate to human ALS remains under 
investigation. Continued refinement of delivery systems and specificity will be critical in providing this 
approach to human patients. 

From a clinical standpoint, CRISPR-based approaches for ALS are still in the early research stage, but 
they show promising potential. RNA-targeting systems like Cas13 are especially interesting because they 
act on RNA rather than DNA, which means their effects are reversible and may carry fewer long-term 
risks (Zeballos et al., 2023). However, a major challenge is delivering CRISPR tools safely and 
effectively into motor neurons. Current methods, such as viral vectors or lipid nanoparticles, can trigger 
immune responses or lead to longer-than-intended expression (Derry, 2021; Wollert, 2020). Researchers 
also need to make sure CRISPR tools avoid cutting the wrong RNA molecules. Even though CRISPR 
targeting of Ataxin-2 has improved TDP-43–related problems in both iPSC-derived neuronal models and 
mouse models  (Zeballos et al., 2023), additional work is needed to optimize delivery, minimize immune 
activation, and ensure controlled, transient expression before this approach can move toward human trials. 

Antisense Oligonucleotides (ASOs) as a Therapy for ALS 

Antisense technology presents a powerful therapeutic platform for addressing genetic disorders by 
leveraging short, synthetic strands of nucleotides known as antisense oligonucleotides (ASOs). These 
molecules are specifically engineered to bind complementary sequences of mRNA, the molecule that 
carries genetic instructions from DNA to produce proteins. As shown in Figure 3, antisense 
oligonucleotides bind to target RNA transcripts, enabling the modulation of splicing or stability to adjust 
protein production levels (Hasting, 2022).  By binding to mRNA, ASOs can block the production of 
disease-causing proteins, offering particular promise for life-threatening conditions. In the context of 
ALS, ASOs are being investigated for their potential to modulate TDP-43. In the pathology of ALS, 
TDP-43 becomes mislocalized to the cytoplasm, where it forms insoluble aggregates. This pathological 
shift leads to both a toxic gain of function, due to the buildup of aggregates, and a loss of nuclear 
function, resulting in widespread RNA dysregulation (Bisset et al., 2015). TDP-43 regulates the splicing 
of its own mRNA, encoded by the TARDBP gene, as well as other key transcripts such as UNC13A. ASOs 
can be strategically designed to restore normal splicing patterns disrupted by TDP-43 dysfunction (Koike, 
2024). Additionally, age-related DNA demethylation, the gradual loss of methyl groups from DNA over 
time, which can alter gene expression patterns without changing the DNA sequence, can impair TDP-43 
autoregulation, leading to excessive TARDBP mRNA production. ASOs targeting these splicing errors 
may help reestablish balanced protein expression levels (Koike, 2024). 
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Figure 3. Mechanism of antisense oligonucleotide (ASO) therapy in modifying gene expression (adapted 
from Hasting, 2022). Antisense oligonucleotides are short, synthetic strands of nucleic acids designed to 
bind specific RNA sequences through complementary base pairing. By attaching to their target RNA, 
ASOs can alter splicing, block translation, or promote RNA degradation, thereby modifying gene 
expression and influencing the amount or form of protein produced. 

Regulation of TDP-43 Splicing and Exitron Control 

One key feature of this regulation involves an exitron, a cryptic exon-like element within a coding region 
that can be included or excluded during splicing. In ALS, improper splicing of this exitron leads to the 
production of aggregation-prone TDP-43 isoforms, different molecular forms of the same protein that 
arise from variations in RNA splicing or other post-transcriptional modifications, often altering the 
protein’s function or stability. 

ASOs have been shown to bind specific RNA regions to block proteins like HNRNPA1 and HNRNPC, 
which normally repress the splicing of the TARDBP exitron (Yamagishi et al., 2024). By inhibiting these 
repressors, ASOs enhance the correct splicing of the exitron, shifting TDP-43 production toward 
IDR-spliced-out isoforms (IDRsTDP) that are less prone to aggregation and more effectively cleared 
through chaperone-mediated autophagy, a cellular process that degrades misfolded proteins (Yamagishi et 
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al., 2024). This strategy directly mitigates TDP-43 proteinopathy, one of ALS’s central pathological 
features. 

Inhibition of TDP-43 Aggregation 

Emerging evidence suggests that computationally designed molecules can bind specific regions of 
TDP-43 to prevent its aggregation into harmful oligomers and fibrils, structured protein assemblies linked 
to neuronal damage. ASOs may be engineered to target these same regions, disrupting aggregation 
pathways and preserving neuronal function (Liu et al., 2023). 

While ASOs offer a promising route to address TDP-43-related toxicity in ALS, the multifaceted nature 
of TDP-43 dysfunction underscores the need for combination therapies. Interventions may need to 
address both the loss of nuclear function and the toxic effects of cytoplasmic aggregates. Moreover, 
TDP-43’s impact on RNA processing, splicing, and cellular transport suggests that future ASO strategies 
will require precise molecular targeting, supported by a deeper understanding of TDP-43 biology (Chou et 
al., 2017; Smethurst et al., 2015). 

Clinically, ASOs are one of the most developed RNA-based treatment approaches, and several ASO drugs 
are already approved for other neurological diseases, showing that this strategy can likely be successful in 
humans (Hastings, 2022). In ALS, ASOs are normally delivered through intrathecal injection so they can 
reach the spinal cord and brain, but this method requires repeated dosing since ASOs gradually get 
cleared over time. ASOs are very specific, which makes them useful for correcting problems like 
UNC13A cryptic exon inclusion or disrupted TARDBP regulation (Keuss et al., 2024; Yamagishi et al., 
2024). At the same time, there are limitations, including possible off-target binding, uneven distribution 
across motor neurons, and dose-dependent immune responses (Hastings, 2022; Bisset et al., 2015). 
Although ASOs seem closer to real clinical use than many newer approaches, researchers still need 
long-term studies to officially confirm that they remain safe, effective, and consistently reach the right 
cells in ALS patients. 

Implications and Future Directions 

By targeting both splicing regulation and toxic protein isoform production, ASOs provide a highly 
specific approach to counteracting TDP-43-related pathology in ALS. Their ability to influence multiple 
aspects of TDP-43 biology, splicing, aggregation, and clearance, makes them a promising therapeutic 
candidate. However, because ALS is a complex and multifactorial disease, combining ASOs with other 
therapeutic strategies could potentially enhance their effectiveness. 

 

CONCLUSION 

TDP-43 plays an essential role in healthy cells by regulating RNA splicing, transport, and stability. 
However, in ALS, this same protein mislocalizes from the nucleus to the cytoplasm, where it aggregates 
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and disrupts normal gene regulation. TDP-43 is central to ALS progression, driving neurodegeneration 
through a dual mechanism: the loss of its normal nuclear RNA-binding function and the gain of toxic 
cytoplasmic aggregation. Modifiers like ATXN2 were shown to influence TDP-43 toxicity and splicing 
errors, such as the inclusion of cryptic exons and exitrons, emerged as major contributors to disease 
progression.  

This pathology underlies the disruption of critical RNA processing pathways and contributes to selective 
neuronal vulnerability. By integrating findings across cellular, molecular, and animal model studies, it 
becomes evident that TDP-43 dysregulation affects not only RNA splicing and transport but also broader 
gene regulatory mechanisms, allowing for widespread RNA misprocessing and neuron degeneration, 
especially in motor neurons. Understanding how this transformation occurs, from a regulatory protein to a 
pathological marker, is key to identifying effective intervention points. 

Emerging targeted therapies offer a promising approach to mitigate TDP-43 toxicity. Therapies such as 
antisense oligonucleotides and CRISPR-mediated therapies aim to restore normal gene regulation and 
cellular homeostasis, highlighting the potential of targeting molecular mechanisms with precision. 
However, despite promising preclinical results, translation to clinical efficacy has been limited. Successful 
therapies will likely require combined or integrative approaches that address both triggers and 
consequences of TDP-43 dysregulation. 

Beyond therapeutic possibilities, TDP-43 serves as a critical lens for understanding ALS physiology and 
pathology. Mapping its interactions identifies vulnerabilities in its mechanisms that may guide the 
development of upcoming interventions. Future studies should focus on investigating cell-type specific 
susceptibilities and the temporal dynamics of TDP-43 mislocalizations. Collectively, this review 
underscores the pivotal role of TDP-43 in disease progression, highlights the mechanistic basis for 
RNA-targeted therapies, and provides a roadmap for translating insights into interventions that may one 
day stop or slow ALS progression. 
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